The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts. 1991

M R Feneley, and J W Fawcett, and R J Keynes
Department of Anatomy, Cambridge, England.

Evacuated muscle is a possible substitute for nerve autografts in the repair of damaged peripheral nerves. Previous experiments have shown that killed or evacuated muscle grafts are as effective as nerve autografts for bridging gaps of up to 4 cm between proximal and distal nerve stumps. Evacuated muscle grafts are made of extracellular matrix components, which are good substrates for axon growth in vitro. However, experiments in vivo have generally demonstrated that live Schwann cells are essential for successful axon regeneration. In the present experiments we have used immunohistochemical techniques with anti-S100 and anti-neurofilament antibodies to visualize axon growth and Schwann cell migration into muscle grafts over the first 10 days following grafting. We only saw axons growing into grafts accompanied by Schwann cells, and most though not all Schwann cells were associated with axons. Schwann cell migration from the proximal stump in association with axons was much faster and more extensive than from the distal stump. We examined muscle grafts over the first 20 days after grafting by electron microscopy. Regenerating axons were always associated with Schwann cells, which were mostly in the basal lamina-lined tubes left by the evacuated myofibrils. A comparison between evacuated muscle grafts and grafts in which the muscle had been killed but not evacuated revealed that 7 days after grafting there were more than twice as many regenerated axons in and distal to the evacuated grafts, but that by 20 days the numbers of axons were similar in the two groups.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann

Related Publications

M R Feneley, and J W Fawcett, and R J Keynes
August 1995, Journal of hand surgery (Edinburgh, Scotland),
M R Feneley, and J W Fawcett, and R J Keynes
October 1990, Neuropathology and applied neurobiology,
M R Feneley, and J W Fawcett, and R J Keynes
January 1990, Progress in neurobiology,
M R Feneley, and J W Fawcett, and R J Keynes
December 1995, Brain research,
M R Feneley, and J W Fawcett, and R J Keynes
October 1993, Plastic and reconstructive surgery,
M R Feneley, and J W Fawcett, and R J Keynes
December 1983, Brain research,
M R Feneley, and J W Fawcett, and R J Keynes
January 1993, Restorative neurology and neuroscience,
M R Feneley, and J W Fawcett, and R J Keynes
January 1991, Acta neuropathologica,
M R Feneley, and J W Fawcett, and R J Keynes
April 1983, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
Copied contents to your clipboard!