Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. 1978

D Sutter, and M Westphal, and W Doerfler

The patterns of integration of the viral genome have been analyzed in four hamster cell lines transformed by adenovirus type 12 (Ad12). It has previously been shown that in each of the cell lines HA12/7, T637, A2497-2 and A2497-3, the viral genome persists in multiple copies, and that different parts of the viral DNA are represented non-stoichiometrically (Fanning and Doerfler, 1976). All four cell lines are oncogenic when injected into hamsters. The DNA from each of the cell lines was extracted and cleaved in different experiments with restriction endonucleases Bam HI, Bgl II, Eco RI, Hind III, Hpa II or Sma I. The DNA fragments were separated on 1% agarose slab gels and transferred to nitrocellulose filters by the Southern technique. Ad12 DNA sequences were detected by hybridization to Ad12 DNA, which was 32 P-labeled by nick translation, and by subsequent autoradiography. In some experiments, the 32P-labeled Eco RI restriction endonuclease fragments of Ad12 DNA were used to investigate the distribution of specific segments of the viral genome in the cellular DNA. For each cell line, a distinct and specific pattern of integrated viral DNA sequences is observed for each of the restriction endonucleases used. Moreover, viral sequences complementary to the isolated Eco RI restriction endonuclease fragments are also distributed in patterns specific for each cell line. There are striking differences in integration patterns among the four different lines; there are also similarities. Because the organization of cellular genes in virus-transformed as compared to normal cells has not yet been determined, conclusions about the existence or absence of specific integration sites for adenovirus DNA appear premature. Analysis of the integration patterns of Ad12 DNA in the four hamster lines investigated reveals that some of the viral DNA molecules are fragmented prior to or during integration. Analysis with specific restriction endonuclease fragments demonstrates that the Eco RI B, D and E fragments, comprising a contiguous segment from 0.17-0.62 fractional length units of the viral DNA, remain intact during integration in a portion of the viral DNA molecules. Although each cell line carries multiple copies of Ad12 DNA, the viral DNA sequences are concentrated in a small number of distinct size classes of fragments. This finding is compatible with, but does not prove, the notion that at least a portion of the viral DNA sequences, is integrated into repetitive sequences, or else that the integrated viral sequences have been amplified after integration. In the three cell lines which were tested, the integration pattern is stable over many generations, with continuous passage-twice weekly-of cells for 6-7 months. In the three cell lines which were examined, the integration pattern is identical in a number of randomly isolated clones. Hence it can be concluded that the patterns of integration are identical among all cells in a population of a given line of transformed cells.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

D Sutter, and M Westphal, and W Doerfler
January 1977, Cell,
D Sutter, and M Westphal, and W Doerfler
April 1981, Journal of molecular biology,
D Sutter, and M Westphal, and W Doerfler
January 1980, Cold Spring Harbor symposia on quantitative biology,
D Sutter, and M Westphal, and W Doerfler
October 1980, Journal of virology,
D Sutter, and M Westphal, and W Doerfler
July 1979, International journal of cancer,
D Sutter, and M Westphal, and W Doerfler
September 1978, Journal of virology,
D Sutter, and M Westphal, and W Doerfler
January 1980, Cold Spring Harbor symposia on quantitative biology,
D Sutter, and M Westphal, and W Doerfler
January 1982, Molekuliarnaia biologiia,
Copied contents to your clipboard!