DNA-mediated transfer of the mouse gene for hypoxanthine phosphoribosyltransferase into cultured mouse cells: no integration of the transferred gene at its homologous site in the host genome. 1981

K Willecke, and M Klomfass, and R Schäfer

An established Chinese hamster cell line was fused with microcells isolated from phenotypically stable transferent mouse cells which contained a mouse transgenome coding for an abnormal form of mouse hypoxanthine phosphoribosyltransferase (HPRT, EC. No. 2.4.2.8) (Willecke et al. 1979). Two hybrids were isolated which expressed the abnormal form of mouse HPRT but no mouse alpha-galactosidase (GALA, EC. No. 3.2.1.22). In one of these microcell hybrids the abnormal HPRT activity segregated under counter-selective conditions with mouse chromosome 3. No mouse chromosome or additional mouse gene marker was found in the second microcell hybrid, possibly because of breakage and/or rearrangement of the integrated transgenome during the isolation of this hybrid. We conclude from these results that the transferred mouse HPRT gene is a phenotypically stable clone is not integrated at its homologous site on the host X chromosome. Rather, the transgenome is probably integrated into mouse chromosome 3, possibly due to homologies in repeated DNA sequences which may occur in the transgenome and which are interspersed at many sites in the host genome.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005813 Genes, Synthetic Biologically functional sequences of DNA chemically synthesized in vitro. Artificial Genes,Synthetic Genes,Artificial Gene,Gene, Artificial,Gene, Synthetic,Genes, Artificial,Synthetic Gene

Related Publications

K Willecke, and M Klomfass, and R Schäfer
January 1988, Molecular and cellular biology,
K Willecke, and M Klomfass, and R Schäfer
May 1975, Proceedings of the National Academy of Sciences of the United States of America,
K Willecke, and M Klomfass, and R Schäfer
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
K Willecke, and M Klomfass, and R Schäfer
October 1974, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
K Willecke, and M Klomfass, and R Schäfer
February 1985, Experimental cell research,
K Willecke, and M Klomfass, and R Schäfer
March 1979, Proceedings of the National Academy of Sciences of the United States of America,
K Willecke, and M Klomfass, and R Schäfer
January 1975, Birth defects original article series,
K Willecke, and M Klomfass, and R Schäfer
January 1975, Current topics in microbiology and immunology,
Copied contents to your clipboard!