Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata. 1981

R Oswald, and J P Changeux

Reversible ligands were attached covalently to membrane-bound acetylcholine receptor from Torpedo marmorata by a method which is generally applicable and does not require the synthesis of specially designed molecules. UV irradiation of the receptor in the presence of [3H]trimethisoquin, [3H]phencyclidine, or [3H]perhydrohistrionicotoxin resulted in the labeling of the binding site(s) for these noncompetitive blockers of the permeability response. The labeling of the delta chain was enhanced by carbamoylcholine, and this increase was blocked by snake alpha-toxins. The effect of carbamoylcholine on [3H]trimethisoquin binding was more pronounced than with the other two noncompetitive blockers; in all instances, the labeling was abolished by unlabeled histrionicotoxin. These three compounds therefore interact with the high-affinity site for noncompetitive blockers. Incorporation of radioactivity also occurred into the alpha chain but either was insensitive to cholinergic effectors or decreased in the presence of carbamoylcholine (or snake alpha-toxin), probably as a result of an interaction with the acetylcholine-binding site. In contrast to the other noncompetitive blockers tested, [3H]chlorpromazine heavily labeled the four receptor polypeptides (alpha, beta, gamma, delta), and this labeling also was enhanced by carbamoylcholine and decreased by histrionicotoxin. These data indicate a contribution of the delta chain to the binding site(s) of several well-characterized noncompetitive blockers and suggest that other receptor polypeptides may also contribute to this binding.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010622 Phencyclidine A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust. 1-(1-Phenylcyclohexyl)piperidine,Angel Dust,CL-395,GP-121,Phencyclidine Hydrobromide,Phencyclidine Hydrochloride,Sernyl,Serylan,CL 395,CL395,Dust, Angel,GP 121,GP121
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D010880 Piperidines A family of hexahydropyridines.
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002746 Chlorpromazine The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class chlorpromazine's antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking DOPAMINE RECEPTORS. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. Aminazine,Chlorazine,Chlordelazine,Chlorpromazine Hydrochloride,Contomin,Fenactil,Largactil,Propaphenin,Thorazine,Hydrochloride, Chlorpromazine
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

R Oswald, and J P Changeux
January 1983, Cold Spring Harbor symposia on quantitative biology,
R Oswald, and J P Changeux
January 1984, Advances in experimental medicine and biology,
R Oswald, and J P Changeux
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
R Oswald, and J P Changeux
December 1973, Biochemical and biophysical research communications,
R Oswald, and J P Changeux
December 1974, Archives of biochemistry and biophysics,
R Oswald, and J P Changeux
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!