Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. 1981

T A Stewart, and B Mintz

The possibility of utilizing mouse teratocarcinoma stem cells as intermediaries for production of new strains of mice with preselected mutant or foreign genes requires that, after propagation in culture (to allow for genetic manipulation and selection), the cells be capable of normalization and orderly development in carrier embryos and, ultimately, of germ-cell formation. Heretofore, no in vitro cell line has fulfilled all these requirements. A karyotypically normal teratocarcinoma culture line was recently established in this laboratory and now has been investigated as a candidate. The line, designated METT-1, is chromosomally female (X/X) and was obtained from the 129 (agouti-colored) inbred strain [Mintz, B. & Cronmiller, C. (1981) Somat Cell Genet 7, 489-505]. The developmental potential of these cells was tested, after prolonged culture and freezing and thawing, by microinjecting them into early (blastocyst stage) embryos of the C57BL/6 (black) strain. Among 312 experimental animals examined at 1 week of age, there were 41 mice (21 females and 20 males) that displayed the coat colors of both strains. This frequency (13%), as well as the extent of the coat areas derived from the cell line, greatly surpasses the contributions observed in all previous experiments, whether with other in vitro teratocarcinoma cell lines or with in vivo transplant lines. The developmental totipotency of METT-1 cells became evident from the presence of substantial amounts of 129-strain cells (bearing an isozyme marker) in all internal tissues of an individual whose coat was largely agouti. The culture-cell lineage also proved to be capable of giving rise to reproductively functional oocytes. Of nine mosaic-coat females testmated to C57BL/6 males, one produced progeny of the diagnostic agouti color in two litters; these heterozygous F(1) offspring in turn transmitted their marker genes to F(2) homozygous segregants. Thus, the METT-1 teratocarcinoma line bridges the gap between in vitro cell propagation and in vivo development and between the soma and the germ line. This creates the option of producing new mouse strains with predetermined genetic changes designed as probes of developmental regulation or as models of human genetic diseases.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005260 Female Females
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013724 Teratoma A true neoplasm composed of a number of different types of tissue, none of which is native to the area in which it occurs. It is composed of tissues that are derived from three germinal layers, the endoderm, mesoderm, and ectoderm. They are classified histologically as mature (benign) or immature (malignant). (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1642) Dysembryoma,Teratoid Tumor,Teratoma, Cystic,Teratoma, Mature,Teratoma, Benign,Teratoma, Immature,Teratoma, Malignant,Benign Teratoma,Benign Teratomas,Dysembryomas,Immature Teratoma,Immature Teratomas,Malignant Teratoma,Malignant Teratomas,Teratoid Tumors,Teratomas,Teratomas, Benign,Teratomas, Immature,Teratomas, Malignant,Tumor, Teratoid,Tumors, Teratoid

Related Publications

T A Stewart, and B Mintz
September 1975, Proceedings of the National Academy of Sciences of the United States of America,
T A Stewart, and B Mintz
May 1990, Cell differentiation and development : the official journal of the International Society of Developmental Biologists,
T A Stewart, and B Mintz
August 1982, Journal of embryology and experimental morphology,
T A Stewart, and B Mintz
April 1965, Saishin igaku. Modern medicine,
T A Stewart, and B Mintz
January 1965, Science (New York, N.Y.),
T A Stewart, and B Mintz
April 1997, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
T A Stewart, and B Mintz
February 1988, Journal of cellular physiology,
T A Stewart, and B Mintz
January 1988, Thrombosis research. Supplement,
Copied contents to your clipboard!