Normal genetically mosaic mice produced from malignant teratocarcinoma cells. 1975

B Mintz, and K Illmensee

Malignant mouse teratocarcinoma (or embryonal carcinoma) cells with a normal modal chromosome number were taken from the "cores" of embryoid bodies grown only in vivo as an ascites tumor for 8 years, and were injected into blastocysts bearing many genetic markers, in order to test the developmental capacities, genetic constitution, and reversibility of malignancy of the core cells. Ninety-three live normal pre- and postnatal animals were obtained. Of 14 thus far analyzed, three were cellular genetic mosaics with substantial contributions of tumor-derived cells in many developmentally unrelated tissues, including some never seen in the solid tumors that form in transplant hosts. The tissues functioned normally and synthesized their specific products (e.g., immunoglobulins, adult hemoglobin, liver proteins) coded for by strain-type alleles at known loci. In addition, a tumor-contributed color gene, steel, not previously known to be present in the carcinoma cells, was detected from the coat phenotype. Cells derived from the carcinoma, which is of X/Y sex chromosome constitution, also contributed to the germ line and formed reproductively functional sperms, some of which transmitted the steel gene to the progeny. Thus, after almost 200 transplant generations as a highly malignant tumor, embryoid body core cells appear to be developmentally totipotent and able to express, in an orderly sequence in differentiation of somatic and germ-line tissues, many genes hitherto silent in the tumor of origin. This experimental system of "cycling" teratocarcinoma core cells through mice, in conjunction with experimental mutagenesis of those cells, may therefore provide a new and useful tool for biochemical, developmental, and genetic analyses of mammalian differentiation. The results also furnish an unequivocal example in animals of a non-mutational basis for transformation to malignancy and of reversal to normalcy. The origin of this tumor from a disorganized embryo suggests that malignancies of some other, more specialized, stem cells might arise comparably through tissue disorganization, leading to developmental aberrations of gene expression rather than changes in gene structure.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009030 Mosaicism The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from a single ZYGOTE, as opposed to CHIMERISM in which the different cell populations are derived from more than one zygote.
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006128 Growth Gradual increase in the number, the size, and the complexity of cells of an individual. Growth generally results in increase in ORGAN WEIGHT; BODY WEIGHT; and BODY HEIGHT.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Mintz, and K Illmensee
December 1978, Proceedings of the National Academy of Sciences of the United States of America,
B Mintz, and K Illmensee
December 1977, The American journal of pathology,
B Mintz, and K Illmensee
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
B Mintz, and K Illmensee
October 1981, Proceedings of the National Academy of Sciences of the United States of America,
B Mintz, and K Illmensee
November 1981, Proceedings of the National Academy of Sciences of the United States of America,
B Mintz, and K Illmensee
January 1977, Advances in pathobiology,
B Mintz, and K Illmensee
June 1981, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!