Characterization and quantification of the androgen and glucocorticoid receptors in cytosol from rat skeletal muscle. 1980

M Snochowski, and E Dahlberg, and J A Gustafsson

The binding of the radioactive synthetic hormonal steroids [3H]dexamethasone (9 alpha-fluoro-11 beta, 17 alpha, 21-trihydroxy-16 alpha-methyl-1,4-pregnadiene-3,20-dione) and [3H]methyltrienolone (17 beta-hydroxy-17 alpha-methyl-4,9,11-estratien-3-one) to cytosol from rat skeletal muscle was studied using dextran-coated charcoal to separate unbound and receptor-bound steroid. The rates of association, dissociation, and degradation of the complexes of dexamethasone and methyltrienolone with receptor were highly dependent on temperature. The temperature dependence of association was greater for dexamethasone, and that of degradation was greater for methyltrienolone. Dissociation rates were insignificant for both steroid-receptor complexes compared to association and degradation rates. The apparent equilibrium dissociation constants for the binding of dexamethasone and methyltrienolone to their receptor binding sites were about 7 and 0.3 nM, respectively, regardless of temperature (0. 15 or 23 degrees C). The lack of influence of temperature on the equilibrium constants indicate that the binding was of hydrophobic character, and the corresponding free energy changes upon binding of dexamethasone and methyltrienolone to their respective binding sites were -41 and -49 kJ mol-1 under equilibrium conditions at 0 degrees C. The apparent maximum number of binding sites determined from Scatchard plots under these conditions was about 1900 fmol/g of tissue, 3500 fmol/mg of DNA or 30 fmol/mg of protein in the case of the dexamethasone receptor, and the corresponding figures for the methyltrienolone were about 100 fmol/g of tissue, 200 fmol/mg of DNA or 2 fmol/mg of protein. The ligand specificities of the binding sites for dexamethasone and methyltrienolone were typical of a glucocorticoid and an androgen receptor, respectively. Both steroid-receptor complexes were retained on DNA-cellulose columns, and were eluted by NaCl at an ionic strength of 0.1. The DNA-cellulose step purified about 20 times, and was used to allow gel exclusion chromatography and electrofocusing. Both steroid-receptor complexes were excluded from a column of Sephadex G-150. Electrofocusing in preparative columns gave reproducible patterns consisting of three peaks for each receptor. The apparent isoelectric points were 5.4, 5.6 and 6.2 for the glucocorticoid receptor, and 5.9, 6.2 and 8.5 for the androgen receptor.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.

Related Publications

M Snochowski, and E Dahlberg, and J A Gustafsson
February 1986, Journal of steroid biochemistry,
M Snochowski, and E Dahlberg, and J A Gustafsson
March 1987, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M Snochowski, and E Dahlberg, and J A Gustafsson
January 1983, Voprosy meditsinskoi khimii,
M Snochowski, and E Dahlberg, and J A Gustafsson
November 1981, Endocrinology,
M Snochowski, and E Dahlberg, and J A Gustafsson
August 1984, Journal of steroid biochemistry,
M Snochowski, and E Dahlberg, and J A Gustafsson
January 1986, Neuroscience and behavioral physiology,
M Snochowski, and E Dahlberg, and J A Gustafsson
January 1984, Problemy endokrinologii,
M Snochowski, and E Dahlberg, and J A Gustafsson
July 1975, Israel journal of medical sciences,
M Snochowski, and E Dahlberg, and J A Gustafsson
January 1984, The Journal of investigative dermatology,
M Snochowski, and E Dahlberg, and J A Gustafsson
November 2001, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!