[Effect of rifampicin on body immunological reactivity]. 1981

E F Chernushenko, and V A Shiniberov

The studies with 60 guinea pigs and 111 albino mice showed that the daily use of rifampicin for a prolonged period of time in an oral dose of 30 mg/kg for the guinea pigs and 20 mg/kg for the mice had a pronounced effect on the immunological reactivity of the host. The use of rifampicin for 3 months resulted in changed in the structure of the lymphoid organs and suppression of T-lymphocytes. It had an inhibitory effect on the development of the anaphylactic shock in response to the resolution dose of the foreign serum. The preliminary treatment of the mice with rifampicin for 2 months lowered the primary and to a greater extent the secondary immune response induced by the sheep red blood cells.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000707 Anaphylaxis An acute hypersensitivity reaction due to exposure to a previously encountered ANTIGEN. The reaction may include rapidly progressing URTICARIA, respiratory distress, vascular collapse, systemic SHOCK, and death. Anaphylactic Reaction,Anaphylactoid Reaction,Anaphylactoid Shock,Shock, Anaphylactic,Anaphylactic Reactions,Anaphylactic Shock,Anaphylactoid Reactions,Reaction, Anaphylactic,Reaction, Anaphylactoid,Shock, Anaphylactoid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin
D012397 Rosette Formation The in vitro formation of clusters consisting of a cell (usually a lymphocyte) surrounded by antigenic cells or antigen-bearing particles (usually erythrocytes, which may or may not be coated with antibody or antibody and complement). The rosette-forming cell may be an antibody-forming cell, a memory cell, a T-cell, a cell bearing surface cytophilic antibodies, or a monocyte possessing Fc receptors. Rosette formation can be used to identify specific populations of these cells. Immunocytoadherence,Formation, Rosette,Formations, Rosette,Immunocytoadherences,Rosette Formations
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

E F Chernushenko, and V A Shiniberov
February 1981, Gigiena i sanitariia,
E F Chernushenko, and V A Shiniberov
April 1957, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
E F Chernushenko, and V A Shiniberov
August 1977, Antibiotiki,
E F Chernushenko, and V A Shiniberov
January 1965, Vestnik Akademii meditsinskikh nauk SSSR,
E F Chernushenko, and V A Shiniberov
January 1996, Mikrobiolohichnyi zhurnal (Kiev, Ukraine : 1993),
E F Chernushenko, and V A Shiniberov
February 1973, Gigiena i sanitariia,
E F Chernushenko, and V A Shiniberov
September 1978, Gigiena i sanitariia,
E F Chernushenko, and V A Shiniberov
December 1971, Gigiena i sanitariia,
Copied contents to your clipboard!