"Superkiller" mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in saccharomyces cerevisiae. 1980

A Toh-E, and R B Wickner

Saccharomyces cerevisiae strains carrying a 1.5 x 10(6)-dalton double-stranded RNA genome in virus-like particles (killer plasmid) secrete a protein toxin that kills strains not carrying this plasmid. At least 28 chromosomal genes (mak genes) are required to maintain or replicate this plasmid. Recessive mutations in any of four other chromosomal genes (ski for superkiller) result in enhanced toxin production. We report that many ski- mak- double mutants are able to maintain the killer plasmid, indicating that the SKI products have an effect on plasmid replication. The ski1-1 mutation suppresses (bypasses) all mak mutations tested except mak16-1. A variant killer plasmid is described that confers the superkiller phenotype and, like chromosomal ski mutations, makes several mak genes dispensable for plasmid replication.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D012330 RNA, Double-Stranded RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms. Double-Stranded RNA,Double Stranded RNA,RNA, Double Stranded
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations

Related Publications

A Toh-E, and R B Wickner
September 1976, Bacteriological reviews,
A Toh-E, and R B Wickner
January 1986, Basic life sciences,
A Toh-E, and R B Wickner
September 1990, Molecular and cellular biology,
A Toh-E, and R B Wickner
January 1985, Antibiotiki i meditsinskaia biotekhnologiia = Antibiotics and medical biotechnology,
Copied contents to your clipboard!