Interactions of vitamin K-dependent proteins with calcium ions and phospholipid membranes. 1978

G L Nelsestuen

The calcium-dependent interaction of vitamin K-dependent proteins with membranes is a complex process that minimally consists of 1) calcium binding to the protein and an essential calcium-dependent protein transition, 2) an essential calcium-membrane interaction, and 3) formation of the protein-membrane complex. Below about 5 mM calcium, the protein-membrane complex binds more calcium than the sum of the components but at higher concentrations protein-membrane binding is not accompanied by additional cation binding. These protein-menbrane interactions function in blood coagulation by increasing the binding affinity of the active site. The increased affinity results from the additive effects of protein-membrane (e.g., prothrombin-, factor Xa- and factor V-membrane) interactions and protein-protein (e.g., factor Xa- factor V and prothrombin-factor V) interactions. The prothrombinase complex can be viewed kinetically as a dissociable three-component enzyme (factor Xa, factor V, and phospholipid) acting on the soluble substrate, prothrombin.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011516 Prothrombin A plasma protein that is the inactive precursor of thrombin. It is converted to thrombin by a prothrombin activator complex consisting of factor Xa, factor V, phospholipid, and calcium ions. Deficiency of prothrombin leads to hypoprothrombinemia. Coagulation Factor II,Factor II,Blood Coagulation Factor II,Differentiation Reversal Factor,Factor II, Coagulation,Factor, Differentiation Reversal,II, Coagulation Factor
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005165 Factor V Heat- and storage-labile plasma glycoprotein which accelerates the conversion of prothrombin to thrombin in blood coagulation. Factor V accomplishes this by forming a complex with factor Xa, phospholipid, and calcium (prothrombinase complex). Deficiency of factor V leads to Owren's disease. Coagulation Factor V,Proaccelerin,AC Globulin,Blood Coagulation Factor V,Factor 5,Factor Five,Factor Pi,Factor V, Coagulation
D005170 Factor X Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder. Autoprothrombin III,Coagulation Factor X,Stuart Factor,Stuart-Prower Factor,Blood Coagulation Factor X,Factor 10,Factor Ten,Stuart Prower Factor,Factor X, Coagulation

Related Publications

G L Nelsestuen
June 1990, British journal of haematology,
G L Nelsestuen
May 1984, The New England journal of medicine,
G L Nelsestuen
March 1973, Biochimica et biophysica acta,
G L Nelsestuen
February 1980, The Journal of clinical investigation,
G L Nelsestuen
January 2017, The journal of physical chemistry letters,
G L Nelsestuen
January 1981, Advances in pediatrics,
G L Nelsestuen
August 1979, Biochemical Society transactions,
Copied contents to your clipboard!