13C NMR study of transamination during acetate utilization by Saccharomyces cerevisiae. 1981

J A den Hollander, and K L Behar, and R G Shulman

13C NMR was used to follow the metabolism of [2- 13C]acetate and [1- 13C]acetate in aerobic suspensions of Saccharomyces cerevisiae. In the experiment with [2- 13C]acetate, the 13C label appeared first in glutamate C4 and subsequently in glutamate C2 and C3. After exhaustion of the acetate, the glutamate signals diminished and the aspartate C2 and C3 peaks increased. During a subsequent chase experiment with unlabeled acetate, the aspartate peaks decreased and the glutamate C2 and C3 peaks increased in intensity. These observations are interpreted in terms of an interplay between the glutamic-oxalacetic transaminase and Krebs cycle activity. This interpretation was confirmed by an experiment with the transaminase inhibitor 2-amino oxyacetate. During all of these experiments, we observed the formation of trehalose. The NMR gives a direct measurement of the label distribution and from that information it followed that the flows through the glyoxylate and the Krebs cycles are comparable. The intermediates citrate, succinate, fumarate, malate, phosphoenolpyruvate, 3-phosphoglycerate, and glucose 6-phosphate were identified in a 13C NMR spectrum of a perchloric acid extract taken during the metabolism of [2- 13C]acetate. Enrichment of the glutamate C5 position shows the existence of a futile cycle in which phosphoenolpyruvate, formed from oxaloacetate, returns to the Krebs cycle through pyruvate and acetyl CoA

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000625 Aminooxyacetic Acid A compound that inhibits aminobutyrate aminotransferase activity in vivo, thereby raising the level of gamma-aminobutyric acid in tissues. Aminooxyacetate,Carboxymethoxyamine,Acid, Aminooxyacetic
D001219 Aspartate Aminotransferases Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1. Aspartate Aminotransferase,Aspartate Transaminase,Glutamic-Oxaloacetic Transaminase,SGOT,Aspartate Apoaminotransferase,Glutamate-Aspartate Transaminase,L-Aspartate-2-Oxoglutarate Aminotransferase,Serum Glutamic-Oxaloacetic Transaminase,Aminotransferase, Aspartate,Aminotransferase, L-Aspartate-2-Oxoglutarate,Aminotransferases, Aspartate,Apoaminotransferase, Aspartate,Glutamate Aspartate Transaminase,Glutamic Oxaloacetic Transaminase,Glutamic-Oxaloacetic Transaminase, Serum,L Aspartate 2 Oxoglutarate Aminotransferase,Serum Glutamic Oxaloacetic Transaminase,Transaminase, Aspartate,Transaminase, Glutamate-Aspartate,Transaminase, Glutamic-Oxaloacetic,Transaminase, Serum Glutamic-Oxaloacetic
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

J A den Hollander, and K L Behar, and R G Shulman
October 1983, Proceedings of the National Academy of Sciences of the United States of America,
J A den Hollander, and K L Behar, and R G Shulman
November 1991, European journal of biochemistry,
J A den Hollander, and K L Behar, and R G Shulman
September 1996, Biochimica et biophysica acta,
J A den Hollander, and K L Behar, and R G Shulman
November 1989, Journal of general microbiology,
J A den Hollander, and K L Behar, and R G Shulman
February 2006, Biochimica et biophysica acta,
J A den Hollander, and K L Behar, and R G Shulman
January 2008, Prikladnaia biokhimiia i mikrobiologiia,
J A den Hollander, and K L Behar, and R G Shulman
December 1989, European journal of biochemistry,
J A den Hollander, and K L Behar, and R G Shulman
April 1996, Antonie van Leeuwenhoek,
J A den Hollander, and K L Behar, and R G Shulman
March 1976, Journal of bacteriology,
J A den Hollander, and K L Behar, and R G Shulman
December 1992, Trends in biochemical sciences,
Copied contents to your clipboard!