Studies on alpha-adrenergic-induced respiration and glycogenolysis in perfused rat liver. 1982

P H Reinhart, and W M Taylor, and F L Bygrave

Phenylephrine (1.5 x 10(-6) M) administered to perfused livers from fed rats gave rise to a rapid, parallel increase in oxygen uptake and glucose output. The time of onset for oxygen uptake was 9.9 +/- 0.4 s following phenylephrine administration, and immediately preceded glucose output which occurred at 11.6 +/- 0.5 s. Near-maximal effects were observed 50 s following alpha-agonist treatment. Both responses appear to be mediated by alpha- 1-adrenergic receptors. The mitochondrial respiratory chain blockers antimycin A and rotenone, inhibited the alpha-agonist-induced oxygen uptake and glycogenolytic responses at inhibitor concentrations similar to those required to block uncoupler-stimulated respiration in the intact perfused liver. Oligomycin and carboxyatractyloside also inhibited the phenylephrine-induced respiratory response. Vasopressin (1 milliunit/ml), and angiotensin II (6 x 10(-9) M) had effects similar to phenylephrine in the perfused liver which also were prevented by the prior administration of antimycin A and rotenone. In contrast, glucagon-induced (10(-8) M) glycogenolysis proceeded in the absence of large changes in respiration, was slower in onset (26.1 +/- 4.2 s following hormone administration), and was not inhibited by mitochondrial respiratory blockers. These data indicate that glycogenolysis induced by alpha-adrenergic agonists, vasopressin, and angiotensin II is associated with a large increase in mitochondrial respiration, that may play a role in a general, as yet undefined mechanism whereby these agents stimulate glycogenolysis in rat liver.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008112 Liver Glycogen Glycogen stored in the liver. (Dorland, 28th ed) Hepatic Glycogen,Glycogen, Hepatic,Glycogen, Liver
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D005260 Female Females
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor

Related Publications

P H Reinhart, and W M Taylor, and F L Bygrave
March 1986, European journal of biochemistry,
P H Reinhart, and W M Taylor, and F L Bygrave
October 1987, Japanese journal of pharmacology,
P H Reinhart, and W M Taylor, and F L Bygrave
May 1980, European journal of biochemistry,
P H Reinhart, and W M Taylor, and F L Bygrave
April 1984, Biochimica et biophysica acta,
P H Reinhart, and W M Taylor, and F L Bygrave
July 1997, The American journal of physiology,
P H Reinhart, and W M Taylor, and F L Bygrave
April 1998, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
P H Reinhart, and W M Taylor, and F L Bygrave
July 1979, Biochemical pharmacology,
P H Reinhart, and W M Taylor, and F L Bygrave
January 1989, Journal of biochemical toxicology,
Copied contents to your clipboard!