Effects of heparin infusion on plasma lipoproteins in subjects with lipoprotein lipase deficiency. Evidence for a role of hepatic endothelial lipase in the metabolism of high-density lipoprotein subfractions in man. 1982

S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis

UI MeSH Term Description Entries
D006951 Hyperlipoproteinemias Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation. Hyperlipoproteinemia
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008072 Hyperlipoproteinemia Type I An inherited condition due to a deficiency of either LIPOPROTEIN LIPASE or APOLIPOPROTEIN C-II (a lipase-activating protein). The lack of lipase activities results in inability to remove CHYLOMICRONS and TRIGLYCERIDES from the blood which has a creamy top layer after standing. Apolipoprotein C-II Deficiency,Hyperchylomicronemia, Familial,Lipoprotein Lipase Deficiency, Familial,Burger-Grutz Syndrome,C-II Anapolipoproteinemia,Chylomicronemia, Familial,Familial Fat-Induced Hypertriglyceridemia,Familial Hyperchylomicronemia,Familial Hyperlipoproteinemia Type 1,Familial LPL Deficiency,Familial Lipoprotein Lipase Deficiency,Hyperlipemia, Essential Familial,Hyperlipemia, Idiopathic, Burger-Grutz Type,Hyperlipoproteinemia Type Ia,Hyperlipoproteinemia Type Ib,Hyperlipoproteinemia, Type I,Hyperlipoproteinemia, Type Ia,Hyperlipoproteinemia, Type Ib,LIPD Deficiency,Lipase D Deficiency,Lipoprotein Lipase Deficiency,Anapolipoproteinemia, C-II,Anapolipoproteinemias, C-II,Apolipoprotein C II Deficiency,Apolipoprotein C-II Deficiencies,Burger Grutz Syndrome,Burger-Grutz Syndromes,C-II Anapolipoproteinemias,Chylomicronemias, Familial,Deficiencies, Apolipoprotein C-II,Deficiencies, Familial LPL,Deficiencies, LIPD,Deficiencies, Lipase D,Deficiencies, Lipoprotein Lipase,Deficiency, Apolipoprotein C-II,Deficiency, Familial LPL,Deficiency, LIPD,Deficiency, Lipase D,Deficiency, Lipoprotein Lipase,Essential Familial Hyperlipemia,Essential Familial Hyperlipemias,Familial Chylomicronemia,Familial Chylomicronemias,Familial Fat Induced Hypertriglyceridemia,Familial Fat-Induced Hypertriglyceridemias,Familial Hyperchylomicronemias,Familial Hyperlipemia, Essential,Familial Hyperlipemias, Essential,Familial LPL Deficiencies,Fat-Induced Hypertriglyceridemia, Familial,Fat-Induced Hypertriglyceridemias, Familial,Hyperchylomicronemias, Familial,Hyperlipemias, Essential Familial,Hyperlipoproteinemia Type Ias,Hyperlipoproteinemia Type Ibs,Hyperlipoproteinemia Type Is,Hyperlipoproteinemias, Type I,Hyperlipoproteinemias, Type Ia,Hyperlipoproteinemias, Type Ib,Hypertriglyceridemia, Familial Fat-Induced,Hypertriglyceridemias, Familial Fat-Induced,LIPD Deficiencies,LPL Deficiencies, Familial,LPL Deficiency, Familial,Lipase D Deficiencies,Lipase Deficiencies, Lipoprotein,Lipoprotein Lipase Deficiencies,Syndrome, Burger-Grutz,Syndromes, Burger-Grutz,Type I Hyperlipoproteinemia,Type I Hyperlipoproteinemias,Type Ia Hyperlipoproteinemia,Type Ia Hyperlipoproteinemias,Type Ib Hyperlipoproteinemia,Type Ib Hyperlipoproteinemias
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride

Related Publications

S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
August 1980, Atherosclerosis,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
September 1983, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
April 2004, Metabolism: clinical and experimental,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
February 1981, Journal of lipid research,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
July 2004, Current opinion in cardiology,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
September 1989, Clinica chimica acta; international journal of clinical chemistry,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
October 1985, Obstetrics and gynecology,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
June 1991, Atherosclerosis,
S N Rao, and C Cortese, and N E Miller, and Y Levy, and B Lewis
June 1984, Journal of lipid research,
Copied contents to your clipboard!