Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish. 1982

C E Carr, and L Maler, and E Sas

The electrosensory system of weakly electric gymnotiform fish is described from the receptor distribution on the body surface to the termination of the primary afferents in the posterior lateral line lobe (PLLL). There are two types of electroreceptor(ampullary and tuberous) and a single type of lateral line mechanoreceptor (neuromast). Receptor counts in Apteronotus albifrons show that (1) neuromasts are distributed as in other teleosts; (2) ampullary receptors number 151 on one side of the head and 208 on one side of the body; (3) tuberous receptors were estimated to number 3,000-3,500 on one side of the head and 3,500-5,000 on one side of the body. The distribution of each receptor type is described. Each receptor is innervated by a single primary afferent. Electrosensory afferents have myelinated cell bodies in the ganglion of the anterior lateral line nerve (ALLN). The distribution of these ganglion cell diameters is strongly bimodal in Apteronotus and Eigenmannia: The smaller-diameter cells may be those which innervate ampullary electroreceptors, the larger-diameter tuberous electroreceptors. Transganglionic HRP transport techniques were used to determine the first-order connections of the anterior lateral line nerve in six species of gymnotiform fish. Small branches of the ALLN were labeled so as to determine the somatotopic organization in the PLLL. The PLLL is divided into four segments from medial to lateral, termed medial, centromedial, centrolateral, and lateral segments (Heiligenberg and Dye, '81). Representations of the head are found rostrally in each zone, and the trunk is mapped caudally in each zone. Thus there are four body maps in the PLLL. The medial segment receives ampullary input (Heiligenberg and Dye, '82) and maps the dorsoventral body axis mediolaterally, as does the tuberous centrolateral segment. The tuberous centromedial and lateral segments map the dorsoventral axis lateromedially. Thus the medial and centromedial segments meet belly to belly, the centromedial and centrolateral segments meet back to back, and the centrolateral and lateral segments meet belly to belly. Adjacent electrosensory maps within the PLLL are therefore always mirror images.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005154 Facial Nerve The 7th cranial nerve. The facial nerve has two parts, the larger motor root which may be called the facial nerve proper, and the smaller intermediate or sensory root. Together they provide efferent innervation to the muscles of facial expression and to the lacrimal and SALIVARY GLANDS, and convey afferent information for TASTE from the anterior two-thirds of the TONGUE and for TOUCH from the EXTERNAL EAR. Cranial Nerve VII,Marginal Mandibular Branch,Marginal Mandibular Nerve,Seventh Cranial Nerve,Nerve VII,Nerve of Wrisberg,Nervus Facialis,Nervus Intermedius,Nervus Intermedius of Wrisberg,Cranial Nerve VIIs,Cranial Nerve, Seventh,Facial Nerves,Mandibular Nerve, Marginal,Mandibular Nerves, Marginal,Marginal Mandibular Nerves,Nerve VIIs,Nerve, Facial,Nerve, Marginal Mandibular,Nerve, Seventh Cranial,Nerves, Marginal Mandibular,Nervus Faciali,Seventh Cranial Nerves,Wrisberg Nerve,Wrisberg Nervus Intermedius
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.

Related Publications

C E Carr, and L Maler, and E Sas
September 1989, The Journal of experimental biology,
C E Carr, and L Maler, and E Sas
July 2013, The Journal of experimental biology,
C E Carr, and L Maler, and E Sas
January 1987, The Journal of comparative neurology,
C E Carr, and L Maler, and E Sas
December 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C E Carr, and L Maler, and E Sas
December 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C E Carr, and L Maler, and E Sas
August 1987, The Journal of comparative neurology,
C E Carr, and L Maler, and E Sas
January 2016, Frontiers in computational neuroscience,
Copied contents to your clipboard!