Dynamics of membrane-cytoskeleton interactions in activated blood platelets. 1982

V Pribluda, and A Rotman

The dynamics of actin polymerization, cytoskeleton formation, and interaction with membrane and cytoplasmic proteins as a result of platelet activation by temperature. ADP, or thrombin were studied. The polymerization of about 30% of platelet DNase I available actin to a nonavailable state is rapid and complete within 10 s after platelet activation with ADP and thrombin. This polymerization might be related to shape change rather than to aggregation or secretion. A similar value of actin polymerization is obtained when platelets are induced to change shape by cooling. This polymerization is partially reversible upon deactivation of the platelets by apyrase, hirudin, or rewarming. Cycles of temperatures-mediated activation and deactivation show a cyclic variation in the state of actin, with a tendency to refractivity to further changes after a couple of cycles. No correlation is observed between microtubule integrity and actin polmerization when studies are performed with platelets pretreated with colchicine. Analysis of the Triton residue composition shows that the cytoskeleton of resting platelets is composed mainly of actin and myosin in a 4.5:1 ratio. Activation with ADP and thrombin leads to the association and incorporation of several other protein (actin binding protein, 95 000 daltons, three to four proteins in the 35 000-dalton region, and two proteins in the 17 000-dalton region with the cytoskeleton). The incorporation of these proteins has a dynamic nature that depends on both the state of aggregation and the reversibility of the activation. Activation leads to a significant increase in the total cytoskeletal proteins, and although low temperature also induces such an increase, the cytoskeletal pattern of cooled platelets is not different from that of resting platelets. A complete reversibility in morphology and amount of protein was observed with temperature cycling. In light of these results, the dynamic nature of the state of actin in platelets is discussed.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

V Pribluda, and A Rotman
September 1985, The Journal of cell biology,
V Pribluda, and A Rotman
April 2015, Analytical and bioanalytical chemistry,
V Pribluda, and A Rotman
June 1990, Biochimica et biophysica acta,
V Pribluda, and A Rotman
February 1996, Current opinion in cell biology,
V Pribluda, and A Rotman
April 1994, Annals of the New York Academy of Sciences,
V Pribluda, and A Rotman
January 1985, Biochemical and biophysical research communications,
V Pribluda, and A Rotman
November 1992, Science (New York, N.Y.),
V Pribluda, and A Rotman
July 2009, Cellular and molecular life sciences : CMLS,
Copied contents to your clipboard!