Activated human monocytes inhibit the intracellular multiplication of Legionnaires' disease bacteria. 1981

M A Horwitz, and S C Silverstein

We have examined the interaction between virulent egg yolk-grown L. pneumophila, Philadelphia 1 strain, and in vitro-activated human monocytes, under antibiotic-free conditions. Freshly explanted human monocytes activated by incubation with concanavalin A (Con A) and human lymphocytes inhibited the intracellular multiplication of L. pneumophila. Both Con A and lymphocytes were required for activation. Con A was consistently maximally effective at greater than or equal to 4 mug/ml. Monocytes activated by incubation with cell-free filtered supernatant from Con A-sensitized mononuclear cell cultures also inhibited the intracellular multiplication of L. pneumophil a. The most potent supernatant was obtained from mononuclear cell cultures incubated with greater than or equal to 15 mug/ml Con A for 48 h. The degree of monocyte inhibition of L. pneumophila multiplication was proportional to the length of time monocytes were preincubated with supernatant (48 {greater than} 24 {greater than} 12 h) and to the concentration of supernatant added (40 percent {greater than} 20 percent {greater than} 10 percent {greater than} 5 percent). Monocytes treated with supernatant daily were more inhibitory than monocytes treated initially only. With time in culture, monocytes progressively lost a limited degree of spontaneous inhibitory capacity and also lost their capacity to respond to supernatant with inhibition of L. pneumophila multiplication. Supernatant-activated monocytes inhibited L. pneumophila multiplication in two ways. They phagocytosed fewer bacteria, and they slowed the rate of intracellular multiplication of bacteria that were internalized. As was the case with nonactivated monocytes, antibody had no effect on the rate of intracellular multiplication in supernatant-activated monocytes. Neither supernatant-activated nor nonactivated monocytes killed L. pneumophila in the absence of antibody. Both killed a limited proportion of these bacteria in the presence of antibody and complement. We have previously reported that anti-L, pneumophila antibody and complement neither promote effective killing of L. pneumophila by human polymorphonuclear leukocytes and monocytes nor inhibit the rate of L. pneumophila multiplication in monocytes. These findings and our present report that activated monocytes do inhibit L. pneumophila multiplication indicate that cell-mediated immunity plays a major role in host defense against Legionnaires' disease.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007875 Legionella Gram-negative aerobic rods, isolated from surface water or thermally polluted lakes or streams. Member are pathogenic for man. Legionella pneumophila is the causative agent for LEGIONNAIRES' DISEASE.
D007877 Legionnaires' Disease An acute, sometimes fatal, pneumonia-like bacterial infection characterized by high fever, malaise, muscle aches, respiratory disorders and headache. It is named for an outbreak at the 1976 Philadelphia convention of the American Legion. Legionella pneumophila Infections,Infections, Legionella pneumophila,Legionnaire Disease,Pontiac Fever,Disease, Legionnaire,Disease, Legionnaires',Fever, Pontiac,Infection, Legionella pneumophila,Legionella pneumophila Infection,Legionnaire's Disease,Legionnaires Disease
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.

Related Publications

M A Horwitz, and S C Silverstein
October 1986, Journal of immunology (Baltimore, Md. : 1950),
M A Horwitz, and S C Silverstein
June 1988, Journal of immunology (Baltimore, Md. : 1950),
M A Horwitz, and S C Silverstein
November 1980, Annals of internal medicine,
M A Horwitz, and S C Silverstein
March 1991, Molecular biotherapy,
M A Horwitz, and S C Silverstein
February 1995, The Journal of infectious diseases,
Copied contents to your clipboard!