Bicarbonate absorption by in vitro amphibian small intestine. 1981

J F White, and M A Imon

Isolated segments of jejunum from Amphiuma bathed in Cl--free (SO42(-)) media usually generated serosa-negative electrical potentials when HCO3(-) was present in the media. Bidirectional isotope fluxes under short circuit revealed a negligible absorption of Na+ and a residual flux consistent with anion absorption. Acetazolamide (10(-4) M) eliminated the short-circuit current and the residual flux. Segments of jejunum exposed on the mucosal surface to HCO3(-) (pH 7.4) alkalinized the unbuffered serosal fluid at a rate of about 1.1 mueq . h-1 . cm-2, as measured by the pH-stat while clamped at zero transepithelial potential. Acetazolamide, anoxia, and 2,4-dinitrophenol lowered the rate of alkalinization and simultaneously reduced the short-circuit current by an equal amount. Absorption was constant above a [HCO3(-)] of 35 meq/l and uninfluenced by applied transepithelial voltage gradients. HCO3(-) absorption was not reduced after replacement of media Na+ or Cl- but was reduced on addition of ouabain or removal of K+. It is concluded that the jejunum actively absorbs HCO3(-) by an electrogenic process that does not involve Na+-H+ exchange.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical

Related Publications

J F White, and M A Imon
November 1968, The Journal of physiology,
J F White, and M A Imon
January 1984, Acta vitaminologica et enzymologica,
J F White, and M A Imon
May 1977, The Journal of physiology,
J F White, and M A Imon
January 1976, Journal of animal science,
J F White, and M A Imon
November 1986, The American journal of physiology,
J F White, and M A Imon
June 2003, Current opinion in lipidology,
J F White, and M A Imon
April 1974, Comparative biochemistry and physiology. A, Comparative physiology,
J F White, and M A Imon
February 1978, The American journal of physiology,
Copied contents to your clipboard!