To understand the distribution of oxygen and carbon dioxide in the avian lung, a theoretical treatment of gas exchange in the parabronchus of the avian lung is described. The model is modified after Zeuthen (1942). In addition to bulk flow through the parabronchial lumen, diffusion through the air spaces of both the parabronchial lumen and air capillaries is treated. The relationship of PO2 and PCO2 within the blood capillaries, air capillaries, and parabronchial lumen to parabronchial blood flow and ventilation is graphically shown. The results indicate that the variations of PO2 and PCO2 along an air capillary are less than one torr under resting conditions. Removal of diffusion resistance within the air space of the air capillaries increases calculated parabronchial gas exchange by less than 0.1% at rest. At high or resting ventilation rates the partial pressure profile along the parabronchial lumen calculated considering bulk flow only agrees well with the profile calculated considering bulk flow and axial diffusion, but as the ventilation rate decreases there is increasingly large disagreement. Forward diffusion of O2 toward the parabronchus reduces pre-parabronchial PO2 and backward diffusion of CO2 from the parabronchus increases PCO2. Neglecting diffusion within the air spaces of both the lumen and the air capillaries increases calculated parabronchial gas exchange by less than 2% (CO2) or 6% (O2) at rest.