Types of "H2O" in human enamel and in precipitated apatites. 1978

R Z LeGeros, and G Bonel, and R Legros

Types of "H2O" in human enamel and in precipitated apatites are characterized using X-ray diffraction, infrared (IR) absorption spectroscopic and thermogravimetric analyses. Changes in lattice parameters (principally in the a-axis dimensions) and in the character of the IR absorption bands are correlated with weight losses at pyrolysis temperatures of 100 degrees to 400 degrees C and with effect of rehydration and reignition of previously ignited samples. This study demonstrated that the loss of "H2O" below 200 degrees C is reversible and causes no significant change in the lattice parameter of these apatites, whereas loss of "H2O" between 200 degrees and 400 degrees C is irreversible and causes a contraction in the a-axis dimension. It is proposed that two general types of "H2O" are present in these apatites: (a) adsorbed H2O--characterized by reversibility, thermal instability below 200 degrees C, and lack of effect on lattice parameters; and (b) lattice H2O--characterized by irreversibility, thermal instability between 200 and 400 degrees C, and induction of expansion in the a-axis dimensions of human enamel and precipitated apatites. Lattice H2O is assumed to be due to H2O-for-OH and/or HPO4-for-PO4 substitutions in these apatites. Loss of adsorbed H2O caused sharpening of the OH absorption bands in the spectra of these apatites. Loss of lattice H2O caused the appearance of P-O-P absorption bands (due to the presence of P2O74- group) in precipitated apatites containing small amounts of CO32-.

UI MeSH Term Description Entries
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003743 Dental Enamel A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286) Enamel,Enamel Cuticle,Dental Enamels,Enamel, Dental,Enamels, Dental,Cuticle, Enamel,Cuticles, Enamel,Enamel Cuticles,Enamels
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001031 Apatites A group of phosphate minerals that includes ten mineral species and has the general formula X5(YO4)3Z, where X is usually calcium or lead, Y is phosphorus or arsenic, and Z is chlorine, fluorine, or OH-. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Apatite
D013055 Spectrophotometry, Infrared Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) IR Spectra,Infrared Spectrophotometry,IR Spectras,Spectra, IR
D013818 Thermogravimetry Technique whereby the weight of a sample can be followed over a period of time while its temperature is being changed (usually increased at a constant rate). Thermogravimetries
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

R Z LeGeros, and G Bonel, and R Legros
March 1981, Journal of dental research,
R Z LeGeros, and G Bonel, and R Legros
September 1987, Nichidai koku kagaku = Nihon University journal of oral science,
R Z LeGeros, and G Bonel, and R Legros
January 1981, Calcified tissue international,
R Z LeGeros, and G Bonel, and R Legros
September 1979, Journal of dentistry,
R Z LeGeros, and G Bonel, and R Legros
November 1986, Calcified tissue international,
R Z LeGeros, and G Bonel, and R Legros
January 1977, Caries research,
R Z LeGeros, and G Bonel, and R Legros
November 1996, Advances in dental research,
R Z LeGeros, and G Bonel, and R Legros
January 1997, Ciba Foundation symposium,
R Z LeGeros, and G Bonel, and R Legros
May 1998, Calcified tissue international,
R Z LeGeros, and G Bonel, and R Legros
December 1981, Scandinavian journal of dental research,
Copied contents to your clipboard!