Na+-linked cotransport of glycine in vesicles of Ehrlich cells. 1980

M P Shapiro, and E Heinz

Vesicles have been prepared from Ehrlich cells by using a method based on the early experiments of Forte et al. (Forte, J.G., Forte, T.M. and Heinz, E. (1973) Biochim. Biophys. Acta 298, 827-841) with some minor modifications, using the filter technique. From electron micrographs and from the sensitivity of these vesicles towards osmotic pressure changes in the medium induced by (nonpermeant) sucrose, it is concluded that the vesicles are closed. The counterflow phenomenon with glycine and Na+-linked contransport of glycine appears to indicate that these vesicles are still functioning. The observation of the overshoot phenomenon interpreted in terms of theoretical predictions confirms that the active accumulation of glycine is energized by the Na+ electrochemical potential gradient. In particular, the contribution of the electrical components of these gradients is evidenced by the effects of the anion of the added sodium salt or of the addition of valinomycin. In contrrast to observations by others we found that ouabain does not directly affect Na+-linked cotransport of glycine whereas HgCl2 does so. Nor could any significant overshoot be demonstrated in the absence of an Na gradient. Since these vesicles were not metabolically active, these experiments do not exclude the possibility that in intact cells glycine is in addition transported primarily or partially actively.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

M P Shapiro, and E Heinz
August 1988, The American journal of physiology,
M P Shapiro, and E Heinz
August 1980, Biochimica et biophysica acta,
M P Shapiro, and E Heinz
July 1998, The American journal of physiology,
M P Shapiro, and E Heinz
September 1978, Biochimica et biophysica acta,
M P Shapiro, and E Heinz
January 1974, The Journal of membrane biology,
M P Shapiro, and E Heinz
January 1974, The Journal of membrane biology,
M P Shapiro, and E Heinz
September 1990, Proceedings of the National Academy of Sciences of the United States of America,
M P Shapiro, and E Heinz
September 1989, The American journal of physiology,
Copied contents to your clipboard!