Ultrastructure of intermediate stages in polarity reversal of thyroid epithelium in follicles in suspension culture. 1980

L Nitsch, and S H Wollman

Separated thyroid follicles can be maintained in suspension culture in Coon's modified F-12 medium in 0.5% calf serum. If the serum concentration is raised to 5%, the follicles undergo inversion in 3-5 d. During the process of inversion, epithelial cells can be observed in intermediate stages of polarity reversal. The earliest ultrastructural changes recognized are surface changes in which tight junctions and microvilli appear at the lateral margins of the cell near the medium. Later, changes in the distribution of intracellular organelles occur. The Golgi apparatus shifts towards the end of the cell facing the medium, and lysosomes shift toward the luminal end of the cell. The right junctions and microvilli at the luminal end of the cell disappear sometime after the cytoplasmic organelles rearrange. The luminal colloid disappears only after the surface changes (loss of tight junctions and microvilli) occur at the luminal end of the cell. There appears to be some regulation of the order in which changes occur during polarity reversal of the thyroid epithelial cell.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013961 Thyroid Gland A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively. Thyroid,Gland, Thyroid,Glands, Thyroid,Thyroid Glands,Thyroids
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L Nitsch, and S H Wollman
April 1982, Experimental cell research,
L Nitsch, and S H Wollman
April 1990, Acta endocrinologica,
L Nitsch, and S H Wollman
January 1986, Journal of cellular physiology,
L Nitsch, and S H Wollman
August 1982, The Journal of cell biology,
L Nitsch, and S H Wollman
June 1990, Molecular and cellular endocrinology,
L Nitsch, and S H Wollman
May 1987, Molecular and cellular endocrinology,
L Nitsch, and S H Wollman
September 1982, Molecular and cellular endocrinology,
Copied contents to your clipboard!