Complexes of alfalfa mosaic virus RNA 4 with one and three coat protein dimers. 1980

C J Houwing, and E M Jaspars

RNA 4, the subgenomic coat protein messenger of alfalfa mosaic virus, was loaded with small amounts of coat protein in a reaction in which complete virions were the protein donor. In such a reaction the protein subunits attach to the high-affinity binding sites near the 3' end of RNA 4 [Houwing, C. J., & Jaspars, E. M. J. (1978) Biochemistry 17, 2927-2933]. At a ratio of up to 13 coat protein subunits to 1 mol of RNA 4, complexes with one and three protein dimers, designated complex I and complex III, respectively, were formed. These complexes were isolated by preparative electrophoresis in 4% polyacrylamide gel. At a large excess of the protein donor (280 protein subunit/mol of complex), both complexes I and III were converted into uniform complexes with 10 protein dimers. There were no indications for stable intermediate complexes. A model is suggested for the structure of the complexes which is based on the model proposed for the protein coat of alfalfa mosaic virus [Mellema, J. E., & Van Den Berg, H. J. N. (1974) J. Supramol. Struct. 2, 17-31]. The complexes possibly serve as successive stages in virion assembly. More intriguingly, the complexes could be of regulatory significance. Since the four RNA species of alfalfa mosaic virus have an extensive 3'-terminal homology, and since 3'-terminal interaction with coat protein subunits is thought to be a process leading to recognition of the viral genome by the viral replicase and thus to infectivity, complexes analogous to complexes I and III could represent the infectious forms of the genome RNAs.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D009029 Mosaic Viruses Viruses which produce a mottled appearance of the leaves of plants. Mosaic Virus,Virus, Mosaic,Viruses, Mosaic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000455 Medicago sativa A plant species of the family FABACEAE widely cultivated for ANIMAL FEED. Alfalfa,Lucerne
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

C J Houwing, and E M Jaspars
December 2004, Science (New York, N.Y.),
C J Houwing, and E M Jaspars
March 1983, Virology,
C J Houwing, and E M Jaspars
September 1979, Nucleic acids research,
C J Houwing, and E M Jaspars
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
C J Houwing, and E M Jaspars
January 2003, Ukrains'kyi biokhimichnyi zhurnal (1999 ),
C J Houwing, and E M Jaspars
February 1994, The EMBO journal,
Copied contents to your clipboard!