Fructose utilization and altered cytochrome P-450 in cultured hepatocytes from adult rats. 1980

M Vessal, and M O Choun, and M J Bissell, and D M Bissell

Cultured adult rat hepatocytes incubated in media containing fructose exhibit increased levels of cytochrome P-450, relative to cells incubated with equimolar glucose, and the effect of fructose is proportional to its concentration between 2 and 10 mM. For investigating the mechanism of the effect of fructose on cytochrome P-450 in cultured cells, [U-14C]fructose or [U-14C]glucose were added to the incubation medium, and their uptake and utilization were compared. While the uptake kinetics of the two hexoses were similar, the rate of phosphorylation of fructose was more than 10-fold that of glucose. Similarly, the appearance of fructose carbon in metabolic pools, as well as its conversion to CO2 and cellular glycerolipid, was increased. The latter finding suggested that fructose might alter cytochrome P-450 by stimulating glycerolipid synthesis, since the stability of the cytochrome is lipid-dependent. However, the changes in glycerolipid formation failed to parallel changes in the level of cytochrome P-450 in fructose-treated cells. Moreover, the relative distribution of 14C into specific lipids was similar for both hexoses, suggesting that an increased carbon flux in cells incubated with fructose did not directly impose a qualitative change in cellular lipid synthesis. We conclude that the fructose-mediated alteration of cytochrome P-450 in cultured rat hepatocytes reflects a process other than increased incorporation of fructose carbon into metabolic pools.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005632 Fructose A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Levulose,Apir Levulosa,Fleboplast Levulosa,Levulosa,Levulosa Baxter,Levulosa Braun,Levulosa Grifols,Levulosa Ibys,Levulosa Ife,Levulosa Mein,Levulosado Bieffe Medit,Levulosado Braun,Levulosado Vitulia,Plast Apyr Levulosa Mein,Levulosa, Apir,Levulosa, Fleboplast
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Vessal, and M O Choun, and M J Bissell, and D M Bissell
August 1985, Biochemical pharmacology,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
October 1981, Biochemical pharmacology,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
July 1990, European journal of biochemistry,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
March 1995, The international journal of biochemistry & cell biology,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
May 1985, Archives of biochemistry and biophysics,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
January 1991, Toxicology in vitro : an international journal published in association with BIBRA,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
March 1999, Drug metabolism and disposition: the biological fate of chemicals,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
September 1990, Cancer research,
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
January 1984, Hepatology (Baltimore, Md.),
M Vessal, and M O Choun, and M J Bissell, and D M Bissell
September 1982, Biochemical pharmacology,
Copied contents to your clipboard!