The protein product of the c-cbl oncogene rapidly complexes with the EGF receptor and is tyrosine phosphorylated following EGF stimulation. 1995

D D Bowtell, and W Y Langdon
Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia.

The cbl oncogene was first identified as part of a transforming retrovirus which arose in a mouse pre-B cell lymphoma. Its protein product, p120cbl, is cytoplasmic and has several distinctive domains including a highly basic region, a RING finger motif and a large proline-rich domain. A mutation to cbl in the 70Z/3 pre-B cell lymphoma produces an oncogenic protein which exhibits a marked enhancement of tyrosine phosphorylation. Parallel studies have demonstrated that p120cbl is a substrate of protein tyrosine kinases activated by engagement of the T cell antigen receptor and that cbl is phosphorylated by oncogenic forms of the Abl tyrosine kinase. A genetic analysis of the Caenorhabditis elegans cbl homologue, sli-1, demonstrates that sli-1 negatively regulates the LET-23 tyrosine kinase receptor. Here we show that p120cbl is rapidly phosphorylated on tyrosine residues following EGF stimulation and that it forms an inducible complex with the receptor. Our results also show that the oncogenic 70Z/3 form of cbl has enhanced binding to the EGF receptor and that peptides spanning the proline-rich region bind a range SH3 domains. These findings are consistent with a conserved role for cbl/sli-1 proteins in mammals and nematodes.

UI MeSH Term Description Entries
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071425 Src Homology 2 Domain-Containing, Transforming Protein 1 An SHC-signaling adaptor protein that transduces PHOSPHOTYROSINE-dependent signals downstream of RECEPTOR PROTEIN-TYROSINE KINASES and non-receptor tyrosine kinases. It is required for TGF-BETA-induced CELL MIGRATION; NEOLPASM INVASION; and METASTASIS of BREAST NEOPLASMS; its SH2 DOMAIN is essential for tumor survival. It also functions in signaling downstream of ANGIOPOIETIN RECEPTOR TIE-2, regulating the migration of ENDOTHELIAL CELLS; and PHYSIOLOGIC NEOVASCULARIZATION. SHC (Src Homology 2 Domain-Containing) Transforming Protein 1,SHC-Transforming Protein 1,SHC1 (Src Homology 2 Domain-Containing) Protein,SHC1 Protein,ShcA Protein,Src Homology 2 Domain-Containing-Transforming Protein C1,SHC Transforming Protein 1,Src Homology 2 Domain Containing Transforming Protein C1,Src Homology 2 Domain Containing, Transforming Protein 1
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

D D Bowtell, and W Y Langdon
August 1996, Biochemical and biophysical research communications,
D D Bowtell, and W Y Langdon
November 2009, BMC cell biology,
D D Bowtell, and W Y Langdon
June 1990, Gan no rinsho. Japan journal of cancer clinics,
Copied contents to your clipboard!