Strategic down-regulation of DNA polymerase beta by antisense RNA sensitizes mammalian cells to specific DNA damaging agents. 1995

J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
Laboratory of Cell Biology, University of Texas Medical Branch, Galveston 77555, USA.

Previously, mouse NIH 3T3 cells were stably transfected with human DNA polymerase beta (beta-pol) cDNA in the antisense orientation and under the control of a metallothionein promoter [Zmudzka, B.Z. and Wilson, S.H. (1990) Som. Cell Mol. Gen., 16, 311-320]. To assess the feasibility of enhancing the efficacy of chemotherapy by an antisense approach and to confirm a role for beta-pol in cellular DNA repair, we looked for increased sensitivity to DNA damaging agents under conditions where beta-pol is down-regulated in the antisense cell line. Such a sensitization is anticipated only where beta-pol is rate-limiting in a DNA repair pathway. A number of agents were tested: cis-diamminedichloroplatinum II (cisplatin); 1,3-bis(2-chloroethyl)-1- nitrosourea (BCNU); ionizing radiation and the radio-mimetic drug bleomycin; the bifunctional alkylating agents nitrogen mustard and L-phenylalanine mustard (melphalan); the monofunctional alkylating agent methyl methane sulfonate (MMS) and ultraviolet (UV) radiation. In the cases of cisplatin and UV radiation, a significant enhancement of cytotoxicity was observed. Damage as a result of both of these agents is thought to be repaired by the nucleotide excision repair (NER) pathway. The results suggest that, in this cell line, beta-pol is involved in and is rate-limiting in NER. We propose that down-regulation of beta-pol by antisense approaches might be used to enhance the cytotoxic effects of cisplatin and other DNA damaging chemotherapeutic agents.

UI MeSH Term Description Entries
D008466 Mechlorethamine A biologic alkylating agent that exerts its cytotoxic effects by forming DNA ADDUCTS and DNA interstrand crosslinks, thereby inhibiting rapidly proliferating cells. The hydrochloride is an antineoplastic agent used to treat HODGKIN DISEASE and LYMPHOMA. Chlorethazine,Chlormethine,Mechlorethamine Oxide,Mustine,Nitrogen Mustard,Nitrogen Mustard N-Oxide,Bis(2-chloroethyl)methylamine,Caryolysine,Cloramin,Embichin,Mechlorethamine Hydrochloride,Mechlorethamine Hydrochloride N-Oxide,Mechlorethamine N-Oxide,Methylchlorethamine,Mitomen,Mustargen,NSC-10107,NSC-762,Nitrogranulogen,Nitromin,Hydrochloride N-Oxide, Mechlorethamine,Hydrochloride, Mechlorethamine,Mechlorethamine Hydrochloride N Oxide,Mechlorethamine N Oxide,N-Oxide, Mechlorethamine Hydrochloride,N-Oxide, Nitrogen Mustard,NSC 10107,NSC 762,NSC10107,NSC762,Nitrogen Mustard N Oxide
D008558 Melphalan An alkylating nitrogen mustard that is used as an antineoplastic in the form of the levo isomer - MELPHALAN, the racemic mixture - MERPHALAN, and the dextro isomer - MEDPHALAN; toxic to bone marrow, but little vesicant action; potential carcinogen. Medphalan,Merphalan,Phenylalanine Mustard,Sarcolysine,Sarkolysin,4-(Bis(2-chloroethyl)amino)phenylalanine,Alkeran,L-PAM,Mustard, Phenylalanine
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D001761 Bleomycin A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors. BLEO-cell,Blanoxan,Blenoxane,Bleolem,Bleomicina,Bleomycin A(2),Bleomycin A2,Bleomycin B(2),Bleomycin B2,Bleomycin Sulfate,Bleomycins,Bleomycinum Mack,Bléomycine Bellon,BLEO cell,BLEOcell,Bellon, Bléomycine,Mack, Bleomycinum,Sulfate, Bleomycin
D002330 Carmustine A cell-cycle phase nonspecific alkylating antineoplastic agent. It is used in the treatment of brain tumors and various other malignant neoplasms. (From Martindale, The Extra Pharmacopoeia, 30th ed, p462) This substance may reasonably be anticipated to be a carcinogen according to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (From Merck Index, 11th ed) BCNU,1,3-Bis(2-Chloroethyl)-1-Nitrosourea,BiCNU,FIVB,N,N'-Bis(2-Chloroethyl)-N-Nitrosourea,Nitrumon
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
September 2012, Proceedings of the National Academy of Sciences of the United States of America,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
February 1994, Proceedings of the National Academy of Sciences of the United States of America,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
February 1989, Molecular and cellular biology,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
September 2015, Clinical cancer research : an official journal of the American Association for Cancer Research,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
April 2000, Oncogene,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
December 2009, Current cancer drug targets,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
August 2006, FEBS letters,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
January 2012, PloS one,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
October 2007, Investigational new drugs,
J K Horton, and D K Srivastava, and B Z Zmudzka, and S H Wilson
April 1989, Cancer research,
Copied contents to your clipboard!