Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. 1995

R Raddatz, and A Parini, and S M Lanier
Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston 29425, USA.

Pharmacologically active compounds with an imidazoline and/or guanidinium moiety are recognized with high affinity by a family of membrane-bound proteins collectively known as imidazoline binding sites or imidazoline/guanidinium receptive sites. Two such receptive sites may correspond to imidazoline binding domains identified on the A and B isoforms of monoamine oxidase (MAO), but the detection of monoamine oxidase isoforms in multiple tissues contrasts with the restricted expression of imidazoline-binding proteins. To address these issues, we determined the relationship between monoamine oxidase isoforms and subtypes of imidazoline-binding proteins in human tissues known to express one or both isoforms of MAO. 2-(3-Azido-4-[125I]iodophenoxy)methylimidazoline ([125I]A-ZIPI), a photoaffinity adduct that selectively labels imidazoline-binding proteins, photolabeled an M(r) = approximately 59,000 peptide in liver and an M(r) = approximately 63,000 peptide in placenta, consistent with the M(r) of the MAO isoforms identified by immunoblots in these tissues. The photolabeled species in liver was immunoprecipitated with MAO-B selective antibodies, whereas the photolabeled species in placenta was immunoprecipitated by MAO-A selective antibodies consistent with the isoform of MAO predominantly expressed in these tissues. The imidazoline/guanidinium ligands interact with the enzyme at a site distinct from the substrate recognition domain, and the immunoprecipitated peptides in liver and placenta display distinct ligand recognition properties consistent with those reported for subtypes of imidazoline binding sites. However, the imidazoline binding domain was not detected in platelet membrane preparations containing amounts of MAO-B equivalent to those in the photolabeled liver membranes indicating that recognition of this domain is tissue-restricted. Restricted access to the imidazoline binding domain on platelet MAO-B was not altered by membrane washing with 500 mM KCl or by solubilization and partial purification of the enzyme suggesting that there are distinct subpopulations of MAO. Identification of a binding domain on MAO that recognizes this class of pharmacologically active compounds suggests a novel mechanism for regulation of substrate oxidation/selectivity or that the enzyme may subserve an as yet undefined function.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D008996 Monoamine Oxidase Inhibitors A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414) MAO Inhibitor,MAO Inhibitors,Reversible Inhibitors of Monoamine Oxidase,Monoamine Oxidase Inhibitor,RIMA (Reversible Inhibitor of Monoamine Oxidase A),Reversible Inhibitor of Monoamine Oxidase,Inhibitor, MAO,Inhibitor, Monoamine Oxidase,Inhibitors, MAO,Inhibitors, Monoamine Oxidase

Related Publications

R Raddatz, and A Parini, and S M Lanier
January 1997, Neurochemistry international,
R Raddatz, and A Parini, and S M Lanier
June 1999, Annals of the New York Academy of Sciences,
R Raddatz, and A Parini, and S M Lanier
April 1995, The Journal of biological chemistry,
R Raddatz, and A Parini, and S M Lanier
February 1996, The Journal of pharmacology and experimental therapeutics,
R Raddatz, and A Parini, and S M Lanier
December 2003, Annals of the New York Academy of Sciences,
R Raddatz, and A Parini, and S M Lanier
December 2010, Pharmacological research,
R Raddatz, and A Parini, and S M Lanier
August 1992, European journal of pharmacology,
R Raddatz, and A Parini, and S M Lanier
March 2007, The FEBS journal,
R Raddatz, and A Parini, and S M Lanier
June 1999, Annals of the New York Academy of Sciences,
R Raddatz, and A Parini, and S M Lanier
August 2012, Journal of molecular modeling,
Copied contents to your clipboard!