I2-imidazoline binding sites: relationship with different monoamine oxidase domains and identification of histidine residues mediating ligand binding regulation by H+1. 1996

I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
INSERM U388, Institut Louis Bugnard, CHU Rangueil, Toulouse, France.

We have shown that I2-imidazoline binding sites (I2BSs) are located on both monoamine oxidases A (MAO-A) and B (MAO-B) and are selectively regulated by H+ and K+ in vitro. In the present study we used chemical modifying agents to investigate the localization of I2BSs with respect to different MAO domains and the mechanisms of ligand binding regulation by K+ and H+. In mitochondrial or solubilized preparations from rabbit kidney and liver, modification of cysteine residues, which are critical for MAO activity, did not affect [3H]idazoxan binding, indicating that I2BS is not associated to the cysteine-containing flavin adenine dinucleotide (FAD) prosthetic group or to the catalytic site of MAOs. Among various chemical modifying agents, only diethylpyrocarbonate and 4-bromophenacyl bromide, two histidine modifying agents, inhibited [3H]idazoxan binding to I2BS. The pH profile of diethylpyrocarbonate effect was consistent with the specific modification of histidine residues. In protection experiments, the effect of diethylpyrocarbonate was not prevented in the presence of saturating concentrations of amiloride, guanabenz or KCl, suggesting that these residues are not located within the ligand or K+ binding sites. In contrast, histidine residues appear to be within a MAO domain involved in regulation of [3H]idazoxan binding by H+. Indeed, the pH-dependent increase in [3H]idazoxan binding was fully abolished after treatment of solubilized material with diethylpyrocarbonate. In conclusion, our results show that MAO I2BSs are not located within the flavin adenine dinucleotide prosthetic group or the catalytic site. Histidine(s) residue(s) involved in the regulation of ligand binding to I2BS by H+ also has been identified.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D004146 Dioxanes Compounds that contain the structure 1,4-dioxane.
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
June 1999, Annals of the New York Academy of Sciences,
I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
December 2003, Annals of the New York Academy of Sciences,
I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
January 1997, Neurochemistry international,
I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
July 2000, Neuroscience letters,
I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
March 2000, The Journal of pharmacology and experimental therapeutics,
I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
January 1997, Neurochemistry international,
I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
January 1997, Neurochemistry international,
I Limon-Boulez, and F Tesson, and C Gargalidis-Moudanos, and A Parini
March 2000, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!