The involvement of threonine 160 of cytochrome b of Rhodobacter sphaeroides cytochrome bc1 complex in quinone binding and interaction with subunit IV. 1995

M W Mather, and L Yu, and C A Yu
Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74078, USA.

The cytochrome b subunit (subunit I) of the ubiquinolcytochrome c reductase (bc1 complex) is thought to participate in the formation of two quinone/quinol reaction centers, an oxidizing center (Qo) and a reducing center, in accordance with the quinone cycle mechanism. Threonine 160 is a highly conserved residue in a segment of subunit I that was shown to bind quinone and is placed near the putative Qo site in current models of the bc1 complex. Rhodobacter sphaeroides cells expressing bc1 complexes with Ser or Tyr substituted for Thr160 grow photosynthetically at a reduced rate, and cells expressing the mutated complexes produce an "elevated" level of the bc1 complex. The Ser substitution also affects the interaction of subunit IV with subunit I. Replacement of Thr160 by Ser results in about a 70% loss of the activity in the purified complex, whereas substitution by Tyr lowers the activity by more than 80%. Both replacements lower the apparent Km for ubiquinol. Electron paramagnetic resonance (EPR) spectroscopy shows that in the Ser substituted complex, the environments of the Rieske iron-sulfur cluster in subunit III and the high potential cytochrome b (b562) in subunit I have been modified. The spectra of the Ser160 and Tyr160 iron-sulfur clusters have become redox-insensitive, with a line shape resembling that of the native complex in the fully reduced state. The EPR signal of b562 in the Ser160 complex is shifted from g = 3.50 to g = 3.52, but otherwise the line shape is very similar to the spectrum of the native complex. Most of these results are consistent with current ideas regarding the structure and function of Qo in the bc1 complex, except for the alteration of the b562 EPR feature, because this heme is not thought to be located in proximity to Qo. Immunoblotting analysis showed that the Ser or Tyr substituted complex contained significantly less than a stoichiometric amount of subunit IV. The enzymatic activity of mutated bc1 complex was found to be activable by the addition of purified subunit IV. These results indicate that Thr160 plays an important role in the structure and/or function of the bc1 complex.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000968 Antimycin A An antibiotic substance produced by Streptomyces species. It inhibits mitochondrial respiration and may deplete cellular levels of ATP. Antimycin A1 has been used as a fungicide, insecticide, and miticide. (From Merck Index, 12th ed) Butanoic acid, 2(or 3)-methyl-, 3-((3-(formylamino)-2-hydroxybenzoyl)amino)-8-hexyl-2,6-dimethyl-4,9-dioxo-1,5-dioxonan-7-yl ester,Antimycin A1
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides

Related Publications

M W Mather, and L Yu, and C A Yu
June 1999, Journal of bioenergetics and biomembranes,
M W Mather, and L Yu, and C A Yu
August 1994, Biochemistry,
Copied contents to your clipboard!