Role of subunit IV in the cytochrome b-c1 complex from Rhodobacter sphaeroides. 1994

Y R Chen, and S Usui, and C A Yu, and L Yu
Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74078.

Rhodobacter sphaeroides mutants lacking subunit IV (M(r) = 14,384) of the cytochrome b-c1 complex (representative mutant strain, RS delta IV-2) have been constructed by site-specific recombination between the wild-type genomic subunit IV structural gene (fbcQ) and a suicide plasmid containing a defective fbcQ sequence. RS delta IV-2 gives rise to a photosynthetically competent phenotype after a period of adaptation. The chemical compositions, spectral properties, and cytochrome b-c1 complex activities in subunit IV-deficient chromatophores from adapted RS delta IV-2 are similar to those in wild-type chromatophores. However, the apparent Km for Q2H2 for the b-c1 complex in subunit IV-deficient chromatophores from adapted RS delta IV-2 cells is about four times higher than that in chromatophores from wild-type cells. The cytochrome b-c1 complex activity in subunit IV-deficient chromatophores of adapted RS delta IV-2 cells is more labile to detergent treatment than that from wild-type cells. The specific activities of dodecylmaltoside-solubilized fractions of RS delta IV-2, based on cytochrome b, are only one-fourth that of the untreated chromatophores. Introducing a wild-type fbcQ operon on a stable low copy number plasmid, pRK415, into RS delta IV-2 restores photosynthetic growth behavior, the apparent Km value for Q2H2, and tolerance to detergent treatment to that of wild-type cells. Cytochrome b-c1 complex purified from adapted RS delta IV-2 contains only three subunits. It has only 25% of the activity of the four-subunit enzyme. This low activity is accompanied by an increase of the apparent Km for Q2H2 from 3 to 13 microM, suggesting that subunit IV may be involved in quinone binding in addition to its structural role.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation

Related Publications

Y R Chen, and S Usui, and C A Yu, and L Yu
November 1990, Biochimica et biophysica acta,
Y R Chen, and S Usui, and C A Yu, and L Yu
December 1987, Journal of biochemistry,
Y R Chen, and S Usui, and C A Yu, and L Yu
June 1999, Journal of bioenergetics and biomembranes,
Y R Chen, and S Usui, and C A Yu, and L Yu
July 2009, Biochimica et biophysica acta,
Copied contents to your clipboard!