Single strand targeted triplex formation: targeting purine-pyrimidine mixed sequences using abasic linkers. 1995

E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
Hybridon, Inc., Worcester, MA 01605, USA.

Foldback triplex-forming oligonucleotides (FTFOs) that contain an abasic linker, [2-(4-aminobutyr-1-yl)-1,3-propanediol] (APD linker), in the Hoogsteen domain against pyrimidine bases of a C:G and a T:A base pair were studied for their relative stability and sequence specificity of triplex formation. In general, the APD linker has less destabilizing effect against a C:G base pair than a T:A base pair. Incorporation of three APD linker moieties resulted in decreased binding to the target, which was comparable to results observed with three imperfectly matched natural base triplets. The APD linker incorporation did not result in the loss of sequence specificity of FTFOs, unlike in the case of normal triplex-forming oligonucleotides (TFOs). The introduction of a positively charged abasic linker, however, resulted in decreased stability of the triplex, because of loss of hydrogen bonding and stacking interactions in the major groove. The results of a molecular modeling study show that APD linker can be readily incorporated without any change in the conformation of the natural sugar-phosphate backbone conserving overall triple helix geometry. Further, the modeling study suggests a hydrogen bond formation between the amino group of linker and N4 of cytosine mediated by a solvent molecule (water) in the floor of the base triplet in addition to a contribution from the positive charge on the APD linker amino group. Either a direct or water-mediated hydrogen bond between the amino group of the APD linker and the O4 of thymine is unlikely when the linker is placed against a T:A base pair.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011409 Propylene Glycols Derivatives of propylene glycol (1,2-propanediol). They are used as humectants and solvents in pharmaceutical preparations. Propanediols,Glycols, Propylene
D002082 Butylamines Isomeric amines of butane, where an amino group replaces a hydrogen on one of the four carbons. They include isobutylamine, n-Butylamine, sec-Butylamine, and tert-Butylamine.
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base

Related Publications

E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
September 2005, Journal of the American Chemical Society,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
January 1993, Nucleic acids research,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
August 1995, Nucleic acids research,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
March 1995, Nucleic acids research,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
June 1995, The Journal of biological chemistry,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
November 1994, Gene,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
June 1995, FEBS letters,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
November 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
October 1995, Nucleic acids research,
E R Kandimalla, and A N Manning, and G Venkataraman, and V Sasisekharan, and S Agrawal
September 1994, Journal of the American Chemical Society,
Copied contents to your clipboard!