STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. 1994

M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.

The Saccharomyces cerevisiae gene, VPH1 (Vacuolar pH 1), encodes a 95-kDa integral membrane subunit of the vacuolar-type H(+)-ATPase (V-ATPase) that is required for enzyme assembly; disruption of the VPH1 gene impairs vacuolar acidification (Manolson, M.F., Proteau, D., Preston, R. A., Stenbit, A., Roberts, B. T., Hoyt, M. A., Preuss, D., Mulholland, J., Botstein, D., and Jones, E. W. (1992) J. Biol. Chem. 267, 14294-14303). Here we show that STV1 (Similar To VPH1) encodes an integral membrane polypeptide of 102 kDa with 54% identity with the peptide sequence of Vph1p. High copy expression of STV1 partially restores vacuolar acidification in a delta vph1 mutant strain; solubilization and fractionation of membrane proteins from these vacuoles show that Stv1p co-purifies with bafilomycin A1-sensitive ATPase activity and with the 60- and 69-kDa V-ATPase subunits. Immunofluorescence microscopy of strains bearing a single copy of epitope-tagged STV1 reveals punctate staining of the cytoplasm; overexpression of epitope-tagged Stv1p reveals both punctate cytoplasmic staining and vacuolar membrane staining. Northern analysis shows that disruption of STV1 does not affect the level of transcription of VPH1 and that disruption of VPH1 does not affect the level of transcription of STV1. Strains bearing disruption of genes encoding other V-ATPase subunits (VMA1, VMA2, VMA3, and VMA4) fail to grow on media supplemented with 100 mM CaCl2 or 4 mM ZnCl2, media buffered to pH 7.5, or media with a glycerol carbon source. On the same types of media only a delta vph1 delta stv1 double disruption mutant has growth phenotypes equivalent to strains bearing a single disruption of the VMA1, VMA2, VMA3, and VMA4 genes; a delta vph1 strain has only moderate growth inhibition while a delta stv1 strain has wild type growth on the conditions listed above. We conclude that Stv1p is a functional homologue of Vph1p and suggest that Stv1p and Vph1p may be equivalent subunits for V-ATPases located on different organelles. The function of these 100-kDa homologues may be to target or regulate other common V-ATPase subunits for two distinct cellular locations.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
September 1996, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
May 1999, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
January 1989, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
July 1992, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
June 1993, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
September 1994, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
February 1993, Yeast (Chichester, England),
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
October 1994, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
December 1991, The Journal of biological chemistry,
M F Manolson, and B Wu, and D Proteau, and B E Taillon, and B T Roberts, and M A Hoyt, and E W Jones
January 1992, The Journal of biological chemistry,
Copied contents to your clipboard!