The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sector. 1993

C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
Institute of Molecular Biology, University of Oregon, Eugene 97403.

The yeast vacuolar membrane proton-translocating ATPase (V-ATPase) is a multisubunit complex comprised of peripheral catalytic, and integral membrane domains. At least eight proteins cofractionate with purified preparations of the enzyme including 100-, 69-, 60-, 42-, 36-, 32-, 27-, and 17-kDa polypeptides (Kane, P.M., Yamashiro, C.T., and Stevens, T.H. (1989a) J. Biol. Chem. 264, 19236-19244). We took a reverse genetic approach to clone the structural gene for the 36-kDa subunit of the V-ATPase, VMA6, vma6 null mutants displayed growth characteristics typical of other vma mutants including sensitivity to media buffered at neutral pH or media containing 100 mM Ca2+. Vacuolar acidification was defective in vma6 cells and isolated vacuolar membrane preparations contained no detectable V-ATPase activity. The VMA6 gene encodes a hydrophilic polypeptide of 345 amino acids (predicted molecular mass 39.8-kDa). We present evidence that the VMA6 gene product (Vma6p) is a non-integral membrane component of the membrane pore domain and is required for V-ATPase complex assembly. Vma6p was removed from wild type vacuolar membranes by strong chaotropic agents such as alkaline Na2CO3 or 5M urea, which did not remove integral membrane polypeptides. In yeast cells lacking the integral membrane portion of the V-ATPase complex, Vma6p was unable to stably associate with vacuolar membranes. Conversely, in mutants specifically lacking Vma6p, components of the V-ATPase integral membrane domain were destabilized, and peripheral subunits failed to assemble onto vacuolar membranes. These results are discussed in the context of a developing model for V-ATPase assembly in yeast.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal

Related Publications

C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
September 1994, The Journal of biological chemistry,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
October 1994, The Journal of biological chemistry,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
May 1994, The Journal of biological chemistry,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
June 1995, The Journal of biological chemistry,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
August 1993, The Journal of biological chemistry,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
June 1995, The Journal of biological chemistry,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
January 2001, Molecular membrane biology,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
October 1990, The Journal of biological chemistry,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
August 1997, Biochemical Society transactions,
C Bauerle, and M N Ho, and M A Lindorfer, and T H Stevens
December 1991, The Journal of biological chemistry,
Copied contents to your clipboard!