Melatonin receptor-mediated inhibition of cyclic AMP accumulation in chick retinal cell cultures. 1994

P M Iuvone, and J Gan
Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322.

Melatonin receptors were characterized in cultured neurons and photoreceptors prepared from chick embryo retina. Cultured cells contained high-affinity 2-[125I]iodomelatonin binding sites (KD = 41.6 pM), similar to those in intact retina. The effects of melatonin and related indoles on cyclic AMP accumulation were examined. Melatonin (10(-7) M) had no effect on basal or K(+)-stimulated cyclic AMP accumulation, but inhibited forskolin-stimulated cyclic AMP accumulation by approximately 50%. Melatonin inhibited forskolin-stimulated cyclic AMP accumulation in the presence or absence of the cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, suggesting an effect on cyclic AMP synthesis rather than degradation. Half-maximal inhibition was observed at 5.9 x 10(-10) M melatonin. The relative order of potency among melatonin analogues was 2-iodomelatonin > melatonin approximately 6-chloromelatonin > or = 6-hydroxymelatonin > N-acetylserotonin approximately 5-methoxytryptophol > serotonin. The EC50 value for inhibition of cyclic AMP accumulation by 2-iodomelatonin (36.7 pM) was comparable to the KD value for binding of the radioligand, suggesting that the binding sites represent functional receptors. The inhibitory effect of melatonin was antagonized by the putative melatonin antagonists luzindole, N-acetyltryptamine, and N-(2,4-dinitrophenyl)-5-methoxytryptamine, with estimated KB values of 0.12, 0.17, and 1 microM, respectively. At a concentration of 10 microM, N-(2,4-dinitrophenyl)-5-methoxytryptamine significantly inhibited forskolin-stimulated cyclic AMP accumulation when added alone; at 30 microM, luzindole and N-acetyltryptamine also had significant inhibitory effects. The inhibitory effect of melatonin was blocked by pretreatment with pertussis toxin.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D008735 5-Methoxytryptamine Serotonin derivative proposed as potentiator for hypnotics and sedatives. Meksamine,Methoxytryptamine,Mexamine,5 Methoxytryptamine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

P M Iuvone, and J Gan
January 1992, Science (New York, N.Y.),
P M Iuvone, and J Gan
January 1994, British journal of pharmacology,
P M Iuvone, and J Gan
October 1992, Brain research. Developmental brain research,
Copied contents to your clipboard!