Replication control of plasmid R1: disruption of an inhibitory RNA structure that sequesters the repA ribosome-binding site permits tap-independent RepA synthesis. 1994

P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
Department of Microbiology, Uppsala University, Sweden.

The replication frequency of plasmid R1 is controlled by an antisense RNA, CopA, that inhibits the synthesis of the replication initiator protein, RepA, at the post-transcriptional level. This inhibition is indirect and affects translation of a leader peptide reading frame (tap). Translation of tap is required for repA translation (Blomberg et al., 1992). Here we asked whether an RNA stem-loop sequestering the repA ribosome-binding site blocks tap translation-independent repA expression. Destabilization of this structure resulted in tap-independent RepA synthesis, concomitant with a loss of CopA-mediated inhibition; thus, CopA acts at the level of tap translation. Structure probing of RepA mRNAs confirmed that the introduced mutations induced a local destabilization in the repA ribosome-binding site stem-loop. An increased spacing between the repA Shine-Dalgarno region and the start codon permitted even higher repA expression. In Incl alpha/IncB plasmids, an RNA pseudoknot acts as an activator for rep translation. We suggest that the regulatory pathway in plasmid R1 does not involve an activator RNA pseudoknot.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
July 1992, The EMBO journal,
P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
April 1989, Nucleic acids research,
P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
April 2009, Journal of bacteriology,
P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
January 1991, Molecular microbiology,
P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
January 1991, Molecular microbiology,
P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
November 1991, Molecular & general genetics : MGG,
P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
March 1986, Nucleic acids research,
P Blomberg, and H M Engdahl, and C Malmgren, and P Romby, and E G Wagner
July 1998, Microbiology (Reading, England),
Copied contents to your clipboard!