Transforming growth factor-beta regulates the cell cycle status of interleukin-3 (IL-3) plus IL-1, stem cell factor, or IL-6 stimulated CD34+ human hematopoietic progenitor cells through different cell kinetic mechanisms depending on the applied stimulus. 1994

F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
Laboratory of Experimental Hematology, University of Antwerp (UIA/UZA), Belgium.

The immediate cell kinetic response of highly purified human bone marrow progenitor cells (CD34+ sorted fraction) to the inhibitory effects of transforming growth factor-beta (TGF-beta) was studied using the BrdU-Hoechst flow-cytometric technique. The progenitor cells were stimulated with either interleukin-3 (IL-3) alone or with IL-3 in combination with IL-1, stem cell factor (SCF), or IL-6, and the inhibitory action of TGF-beta was evaluated in each phase of the first three consecutive cell cycles. Semisolid methylcellulose cultures were also performed to compare these initial events to the effects observed after 7, 14, and 21 days of incubation. Within the CD34+ compartment, the progenitor cells can be discriminated on a functional basis, i.e., in terms of TGF-beta sensitivity. Very primitive progenitors, recruited out of the G0 phase by IL-3 plus an early-acting factor (IL-1, SCF) are, upon addition of TGF-beta, arrested specifically in the G1 phase of the second cell cycle. In the clonogenic assays, the increased colony formation due to IL-1 or SCF was completely abolished by the counteracting effect of TGF-beta that diminished colony output back to the level of TGF-beta-plus-IL-3 supplemented colony growth. Addition of TGF-beta to CD34+ progenitors responding to IL-3 alone resulted in an overall retardation, but without an apparent specific accumulation of cells in any of the cell cycles. Finally, within the CD34+ compartment, there exists a subset of IL-3-responsive, but TGF-beta-insensitive, progenitor cells that were, upon addition of TGF-beta, not arrested at all. In conclusion, our results demonstrate that TGF-beta exerts different cell kinetic effects on CD34+ progenitor cell growth depending on the applied stimulus.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
May 1993, Blood,
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
January 1995, Haematologica,
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
January 1996, The Journal of experimental medicine,
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
December 1990, Blood,
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
February 2000, Experimental hematology,
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
January 2003, Oncology research,
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
July 1993, Blood,
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
April 1988, Journal of immunology (Baltimore, Md. : 1950),
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
May 1991, Journal of immunology (Baltimore, Md. : 1950),
F Lardon, and H W Snoeck, and G Nijs, and M Lenjou, and M E Peetermans, and I Rodrigus, and Z N Berneman, and D R Van Bockstaele
September 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Copied contents to your clipboard!