Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. 1994

P C Bush, and T J Sejnowski
Howard Hughes Medical Institute, La Jolla, California.

1. We have used compartmental models of reconstructed pyramidal neurons from layers 2 and 5 of cat visual cortex to investigate the nonlinear summation of excitatory synaptic input and the effectiveness of inhibitory input in countering this excitation. 2. In simulations that match the conditions of a recent experiment, dendritic saturation was significant for physiological levels of synaptic activation: a compound excitatory postsynaptic potential (EPSP) electrically evoked during a depolarization caused by physiological synaptic activation was decreased by up to 80% compared with an EPSP evoked at rest. 3. Synaptic inhibition must be coactivated with excitation to quantitatively match the experimental results. The experimentally observed coactivation of inhibition with excitation produced additional current shunts that amplified the decrease in test EPSP amplitude. About 30% of the experimentally observed decrease in EPSP amplitude was caused by decreases in input resistance (Rin) due to synaptic conductance changes; a reduced driving force accounted for the remaining decrease. 4. The amount of inhibition was then increased by nearly an order of magnitude, to approximately 10% of the total number of inhibitory synapses on a typical cortical pyramidal cell. The sustained firing of this many inhibitory inputs was sufficient to completely suppress the firing of a neuron receiving strong excitatory input. However, this level of inhibition produced a very large reduction in Rin. Such large reductions in Rin have not been observed experimentally, suggesting that inhibition in cortex does not act to veto (shunt) strong, sustained excitatory input (of order 100 ms). 5. We propose instead that strong, transient activation (< 10 ms) of a neuron's inhibitory inputs, sufficient to briefly prevent firing, is used to shape the temporal structure of the cell's output spike train. Specifically, cortical inhibition may serve to synchronize the firing of groups of pyramidal cells during optimal stimulation.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

P C Bush, and T J Sejnowski
June 2002, Journal of neurophysiology,
P C Bush, and T J Sejnowski
November 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P C Bush, and T J Sejnowski
January 1997, Nature,
P C Bush, and T J Sejnowski
May 1998, Journal of neurophysiology,
P C Bush, and T J Sejnowski
October 2003, The European journal of neuroscience,
P C Bush, and T J Sejnowski
October 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P C Bush, and T J Sejnowski
April 2014, Development (Cambridge, England),
P C Bush, and T J Sejnowski
August 2009, Journal of neurophysiology,
Copied contents to your clipboard!