Calcium chelator Quin-2 prevents crocidolite-induced DNA strand breakage in human white blood cells. 1994

S P Faux, and F Michelangeli, and L S Levy
Institute of Occupational Health, University of Birmingham, Edgbaston.

Exposure of human white blood cells to UICC crocidolite asbestos in vitro resulted in the formation of DNA strand breakage in a dose-dependent manner up to a fibre concentration of 100 micrograms/ml. Subsequent incubations with the iron chelator desferrioxamine or the intracellular Ca2+ chelator Quin-2 prevented DNA strand break formation above control incubations. Addition of aurintricarboxylic acid, an endonuclease inhibitor, similarly abolished crocidolite-induced DNA strand breaks in these cells. These results suggest that crocidolite-derived hydroxyl radicals do not directly induce DNA strand breakage in mammalian white blood cells. In order to assess Ca2+ mobilisation from intracellular stores in control and crocidolite-treated cells, the fullness of these stores was measured by treating with thapsigargin, a specific inhibitor of the endoplasmic reticulum Ca(2+)-ATPase. On addition of thapsigargin to fura-2AM-loaded cells treated with crocidolite we demonstrated that the endoplasmic reticulum stores had been depleted as no further Ca2+ was released, unlike control cells. We suggest that strand breakage is caused by a complex set of events involving oxygen free radicals that may disturb intracellular Ca2+ homoeostasis and the breaks are produced by secondary reactions, involving Ca(2+)-mediated enzymes.

UI MeSH Term Description Entries
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000634 Aminoquinolines Quinolines substituted in any position by one or more amino groups.
D001312 Aurintricarboxylic Acid A dye which inhibits protein biosynthesis at the initial stages. The ammonium salt (aluminon) is a reagent for the colorimetric estimation of aluminum in water, foods, and tissues. Aurintricarboxylate,Aluminon,Ammonium Aurintricarboxylate,Aurin Tricarboxylic Acid,Aurintricarboxylic Acid, Calcium (1:3) Salt,Aurintricarboxylic Acid, Calcium (2:3) Salt,Aurintricarboxylic Acid, Triammonium Salt,Aurintricarboxylic Acid, Trisodium Salt,Acid, Aurin Tricarboxylic,Acid, Aurintricarboxylic
D016587 Antimutagenic Agents Agents that reduce the frequency or rate of spontaneous or induced mutations independently of the mechanism involved. Anti-Mutagenic Agent,Antimutagen,Antimutagenic Agent,Anti-Mutagenic Agents,Anti-Mutagenic Effect,Anti-Mutagenic Effects,Antimutagenic Effect,Antimutagenic Effects,Antimutagens,Agent, Anti-Mutagenic,Agent, Antimutagenic,Agents, Anti-Mutagenic,Agents, Antimutagenic,Anti Mutagenic Agent,Anti Mutagenic Agents,Anti Mutagenic Effect,Anti Mutagenic Effects,Effect, Anti-Mutagenic,Effect, Antimutagenic,Effects, Anti-Mutagenic,Effects, Antimutagenic

Related Publications

S P Faux, and F Michelangeli, and L S Levy
June 1989, European journal of biochemistry,
S P Faux, and F Michelangeli, and L S Levy
August 1994, Mutation research,
S P Faux, and F Michelangeli, and L S Levy
January 1975, Basic life sciences,
S P Faux, and F Michelangeli, and L S Levy
March 1990, Biochemical and biophysical research communications,
S P Faux, and F Michelangeli, and L S Levy
January 1990, Cancer communications,
S P Faux, and F Michelangeli, and L S Levy
March 1973, International journal of radiation biology and related studies in physics, chemistry, and medicine,
S P Faux, and F Michelangeli, and L S Levy
December 1972, The Japanese journal of experimental medicine,
S P Faux, and F Michelangeli, and L S Levy
January 2002, Cell biology international,
S P Faux, and F Michelangeli, and L S Levy
December 1987, Cancer research,
Copied contents to your clipboard!