Inhibition of Friend murine leukemia virus activity by guanosine/thymidine oligonucleotides. 1994

J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
Triplex Pharmaceutical Corporation, The Woodlands, TX 77380.

Oligonucleotides consisting of only deoxyguanosine and deoxythymidine were stable in culture and were able to significantly inhibit Friend Murine Leukemia Virus (FMLV) production in acute cell culture assay systems. The oligonucleotides did not share homology with, or possess any complementary (antisense) sequence motifs to the FMLV genome. The guanosine/thymidine-containing oligonucleotides (GTOs) which demonstrated anti-FMLV activity in acute infection assays were synthesized with natural phosphodiester (PD) linkages (backbones). The observed antiviral activities of these oligonucleotides increased significantly when the PD backbone was replaced with a phosphorothioate (PT) backbone. Experiments designed to investigate a potential antiviral mechanism of action demonstrated that oligonucleotides tested were capable of blocking virus adsorption. In addition, GTOs with PD backbones were competitive inhibitors of FMLV reverse transcriptase (RT). When the same experiments were performed using oligonucleotides with PT backbones, all compounds tested demonstrated significant competitive inhibition of FMLV RT. The measured inhibitory activity of all compounds tested in culture assays was enhanced by at least a factor of 10 when the PD linkages were replaced with PT. The enhanced antiviral activity exhibited by the sulfur group on the oligonucleotide backbone, and the lack of any designed, sequence-specific interactions, suggest that a large percentage of the reported antiviral activity of oligonucleotides containing a phosphorothioate backbone is due to factors other than rationally designed, sequence-specific interactions. The ability of GTOs to inhibit FMLV in culture, potentially via a number of different mechanisms, makes this a class of compounds which warrants investigation as therapeutic agents to be used against retroviral infections.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D005622 Friend murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) producing leukemia of the reticulum-cell type with massive infiltration of liver, spleen, and bone marrow. It infects DBA/2 and Swiss mice. Friend Virus,Rowson-Parr Virus,Rowson Parr Virus,Virus, Friend,Virus, Rowson-Parr
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell

Related Publications

J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
June 1994, Journal of acquired immune deficiency syndromes,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
February 1976, Journal of virology,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
June 1984, Journal of the National Cancer Institute,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
June 1989, Biochemical and biophysical research communications,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
August 1980, Biochimica et biophysica acta,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
January 1992, Antisense research and development,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
June 1971, Journal of the National Cancer Institute,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
May 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
August 1975, Cancer research,
J Ojwang, and K M Okleberry, and H B Marshall, and H M Vu, and J H Huffman, and R F Rando
March 1968, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!