Effect of neonatal hypoxia-ischemia on nigro-striatal dopamine receptors and on striatal neuropeptide Y, dynorphin A and substance P concentrations in rats. 1994

M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
Department of Pharmacology, and Toxicology, University of Utah, Salt Lake City 84112.

Perinatal hypoxic-ischemic brain injury was induced in 7- to 8-day-old rats by ligating the left carotid artery with subsequent exposure to 9% oxygen atmosphere for 2.5 h. The animals were killed 7 days later and grouped according to the degree of brain injury sustained after hypoxia-ischemia. Total protein content measured in striatum ipsilateral to the ligation, and dissected from brains showing extensive damage, was reduced to 64% of contralateral tissue. The protein content was not altered in other groups including control animals exposed to air and in sham-operated animals exposed to hypoxic conditions. The concentration of (pg/mg protein) and total (pg/striatum) striatal dynorphin A-like immunoreactivity (DLI) from brains with extensive damage were increased to 481% and 285% of the contralateral side, respectively. Hypoxia-ischemia increased striatal neuropeptide Y-like immunoreactivity (NPYLI) concentration from brains with extensive damage to 157% of contralateral side, but when the results were expressed as total NPYLI content per striatum, NPYLI content in striatum with extensive damage remained unaltered. Substance P-like immunoreactivity (SPLI) concentration and total content per striatum from brains with extensive damage were reduced to 66% and 43% of the contralateral side, respectively. D1 and D2 receptor density in animals killed 10 days after injury was reduced by 24% and 22% of control, respectively, in striatum from brains with extensive damage. These results indicate complex changes in brain neuropeptides following neonatal hypoxia-ischemia. Damage in the substance P system could have functional effects on dopaminergic transmission while the increase in NPYLI and in DLI concentrations may respectively reflect the relative preservation from neuronal damage and possibly an increase in neuropeptide synthesis or decrease in release. The decrease in SPLI concentration and the increase DLI concentration induced by hypoxia-ischemia suggests that these peptides may be present in separate neurons.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D005260 Female Females

Related Publications

M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
September 1987, Neuropharmacology,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
March 1988, Brain research,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
March 2023, Neonatal network : NN,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
November 1993, Zhonghua yi xue za zhi,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
October 1986, Neuroscience letters,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
April 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
March 1980, Brain research,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
April 1997, Zhonghua fu chan ke za zhi,
M Johnson, and G R Hanson, and J W Gibb, and J Adair, and F Filloux
March 1988, European journal of pharmacology,
Copied contents to your clipboard!