Inhibitory effect of indomethacin on prostacyclin receptor-mediated cerebral vascular responses. 1995

H Parfenova, and S Zuckerman, and C W Leffler
Department of Physiology and Biophysics, University of Tennessee, Memphis 38163, USA.

The present study addresses the hypothesis that indomethacin, in addition to blocking prostaglandin synthesis, directly inhibits prostacyclin receptor-mediated cerebral vascular responses. To test this hypothesis, the effects of indomethacin on pial arteriolar dilation in response to the prostacyclin receptor agonist iloprost were investigated using a cranial window technique in newborn pigs. Topically applied iloprost resulted in dose-dependent pial arteriolar dilation and concomitant increases in cortical adenosine 3',5'-cyclic monophosphate (cAMP). Indomethacin (5 mg/kg iv + 10(-4) M topically) greatly reduced both the vasodilation and the increase in cortical cAMP in response to iloprost. In contrast, indomethacin did not attenuate beta-adrenoreceptor-mediated vasodilation and the increase in cortical cAMP in response to isoproterenol. Aspirin (50 mg/kg iv + 10(-3) M topically) did not affect pial arteriolar dilation or the increase in cortical cAMP in response to iloprost. Unlike indomethacin, aspirin was not effective in inhibiting prostanoid-associated cerebral vasodilation and increase in cortical cAMP in response to hypercapnia. The present data suggest that indomethacin selectively inhibits prostacyclin receptor-mediated responses in the newborn pig cerebral circulation. The combination of highly effective inhibition of prostaglandin H synthase and prostacyclin receptor-mediated vasodilation may contribute to the increased efficacy of indomethacin compared with other prostaglandin H synthase inhibitors in blocking certain vasodilator responses associated with prostanoids.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D010841 Pia Mater The innermost layer of the three meninges covering the brain and spinal cord. It is the fine vascular membrane that lies under the ARACHNOID and the DURA MATER. Mater, Pia,Maters, Pia,Pia Maters
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D001241 Aspirin The prototypical analgesic used in the treatment of mild to moderate pain. It has anti-inflammatory and antipyretic properties and acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5) Acetylsalicylic Acid,2-(Acetyloxy)benzoic Acid,Acetysal,Acylpyrin,Aloxiprimum,Colfarit,Dispril,Easprin,Ecotrin,Endosprin,Magnecyl,Micristin,Polopirin,Polopiryna,Solprin,Solupsan,Zorprin,Acid, Acetylsalicylic

Related Publications

H Parfenova, and S Zuckerman, and C W Leffler
September 1980, Brain research,
H Parfenova, and S Zuckerman, and C W Leffler
January 1978, VASA. Zeitschrift fur Gefasskrankheiten,
H Parfenova, and S Zuckerman, and C W Leffler
November 1983, Journal of neurosurgery,
H Parfenova, and S Zuckerman, and C W Leffler
January 1985, Pharmatherapeutica,
H Parfenova, and S Zuckerman, and C W Leffler
May 1983, Journal of neurosurgery,
H Parfenova, and S Zuckerman, and C W Leffler
January 2000, Physiological research,
H Parfenova, and S Zuckerman, and C W Leffler
April 1989, American journal of obstetrics and gynecology,
H Parfenova, and S Zuckerman, and C W Leffler
July 1991, Molecular pharmacology,
H Parfenova, and S Zuckerman, and C W Leffler
April 1980, Pharmacological research communications,
Copied contents to your clipboard!