Production and characterization of monoclonal antibodies against Panulirus interruptus hemocyanin. 1995

F G Perton, and W Baron, and A J Scheffer, and J J Beintema
Biochemisch Laboratorium, Rijksuniversiteit Groningen, The Netherlands.

Since the primary and higher-order structures of hemocyanin from the crustacean arthropod Panulirus interruptus have been elucidated completely, it should be possible to determine which regions of this immunogenic molecule are recognized most often by antibodies. Monoclonal antibodies were raised against subunits a and b of this hemocyanin, and fourteen of them were further characterized. The produced antibodies were of class IgG, subclasses 1 or 2a. Most of them had dissociation constants on the order of magnitude 10(-8)-10(-10), a few had lower affinities. Most clones showed no or negligible cross-reactivity with other crustacean hemocyanins. The reactivity of most other clones diminished with increasing sequence difference between the investigated hemocyanins. However, in a few instances a stronger reactivity with other hemocyanins was observed than with that from Panulirus interruptus. After complete denaturation of the hemocyanin there was no reaction with the monoclonal antibodies, indicating that the latter recognize conformational epitopes. Only one monoclonal antibody reacted with denatured hemocyanin. This antibody was also the only one which reacted with a CNBr digest, which means that it recognizes a sequential epitope. Several antibodies showed a faint reaction on Western blots, indicating the presence of some refolded native structure. Limited proteolysis of the hemocyanin molecule results in the formation of a 18 kDa fragment, representing domain 1, and a 55 kDa fragment representing domains 2 and 3. It was determined on Western blots of the digest on which fragment epitopes for eleven of the monoclonal antibodies were located.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003445 Crustacea A large subphylum of mostly marine ARTHROPODS containing over 42,000 species. They include familiar arthropods such as lobsters (NEPHROPIDAE), crabs (BRACHYURA), shrimp (PENAEIDAE), and barnacles (THORACICA). Ostracoda,Ostracods,Crustaceas,Ostracod,Ostracodas
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006433 Hemocyanins Metalloproteins that function as oxygen transport proteins in the HEMOLYMPH of MOLLUSKS and ARTHROPODS. They are characterized by two copper atoms, coordinated with HISTIDINE residues, that reversibly bind a single oxygen molecule; they do not contain HEME groups. Hemocyanin,alpha-Haemocyanin,alpha-Hemocyanin,alpha-Hemocyanins,alpha Haemocyanin,alpha Hemocyanin,alpha Hemocyanins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

F G Perton, and W Baron, and A J Scheffer, and J J Beintema
December 1980, Biochimica et biophysica acta,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
December 1979, Biochemistry,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
July 1982, Journal of molecular biology,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
May 1992, European journal of biochemistry,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
June 1982, European journal of biochemistry,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
May 1989, European journal of biochemistry,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
May 1997, FEBS letters,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
September 1986, European journal of biochemistry,
F G Perton, and W Baron, and A J Scheffer, and J J Beintema
May 1994, European journal of biochemistry,
Copied contents to your clipboard!