Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter gene. 1994

M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
Department of Physiology and Biophysics, University of Iowa, Iowa City 52243.

We have cloned and characterized the rat GLUT4 gene in order to identify the cis-DNA elements responsible for tissue-specific GLUT4 expression. In this study, a variety of luciferase reporter gene constructs were transiently transfected into C2C12 myoblasts and myotubes as a model for skeletal muscle differentiation. These data identified a 103-base pair fragment, located from -522 to -420 relative to the transcription initiation site, that was sufficient to account for GLUT4 C2C12 myotube-specific expression. This fragment was operationally defined as an enhancer since it conferred myotube-specific expression in the context of both the minimal native GLUT4 or the heterologous thymidine kinase promoters in an orientation-independent manner. Further, mutagenesis of this fragment demonstrated that a sequence analogous to the muscle creatine kinase myocyte enhancer factor 2 (MEF2) binding site (-466 and -457) was required for transcriptional activation. Electrophoretic mobility gel shift assays demonstrated specific binding activity to the GLUT4 MEF2 sequences which directly correlated with functional expression. Although this element was capable of directing myotube-specific expression when cloned as multiple copies into luciferase reporter gene constructs, the MEF2 sequence alone was insufficient to enhance GLUT4 expression. These data demonstrated that GLUT4 muscle-specific expression is conferred by a 103-base pair DNA sequence located between -522 and -420 of rat GLUT4 gene. This region encompasses a MEF2 binding site which was necessary, but not sufficient, for transcriptional activation.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
June 1998, The Journal of biological chemistry,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
March 2021, Arteriosclerosis, thrombosis, and vascular biology,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
January 2000, Exercise and sport sciences reviews,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
June 2009, Molecular and cellular biology,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
January 1998, Annual review of cell and developmental biology,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
October 1991, Molecular and cellular biology,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
May 1995, Endocrinology,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
February 2014, Iranian Red Crescent medical journal,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
December 2005, American journal of physiology. Endocrinology and metabolism,
M L Liu, and A L Olson, and N P Edgington, and W S Moye-Rowley, and J E Pessin
July 2006, Experimental cell research,
Copied contents to your clipboard!