CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. 1995

S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, Illkirch, CU de Strasbourg, France.

Rather unexpectedly, major histocompatibility complex class II-deficient mice have a significant population of peripheral CD4+ T lymphocytes. We have investigated these cells at the population and clonal levels. CD4+ T lymphocytes from class II-deficient animals are thymically derived, appear early in ontogeny, exhibit the phenotype of resting memory cells, are potentially functional by several criteria, and have a diverse T cell receptor repertoire. They do not include substantially elevated numbers of NK1.1+ cells. Hybridomas derived after polyclonal stimulation of the CD4+ lymphocytes from class II-deficient animals include a subset with an unusual reactivity pattern, responding to splenocytes from many mouse strains including the strain of origin. Most members of this subset recognize the major histocompatibility complex class Ib molecule CD1; their heterogeneous reactivities and T cell receptor usage further suggest the involvement of peptides and/or highly variable posttranslational modifications.

UI MeSH Term Description Entries
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
September 1994, European journal of immunology,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
September 1991, Science (New York, N.Y.),
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
April 1995, European journal of immunology,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
May 2004, Immunology,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
July 1993, The Journal of experimental medicine,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
July 1994, The Journal of experimental medicine,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
June 1995, Blood,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
November 1995, European journal of immunology,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
January 1993, Chemical immunology,
S Cardell, and S Tangri, and S Chan, and M Kronenberg, and C Benoist, and D Mathis
September 2018, Circulation,
Copied contents to your clipboard!