Activation of virus-specific major histocompatibility complex class II-restricted CD8+ cytotoxic T cells in CD4-deficient mice. 1995

M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands.

Acute enteritic or respiratory disease is a consequence of coronavirus infection in man and rodents. Mouse hepatitis virus, stain A59 (MHV-A59) causes acute hepatitis in mice and rats and induces a response of major histocompatibility complex (MHC) class II-restricted CD4+ cytotoxic T cells, protecting mice against acute infection. In the present study we show that MHV-A59 infection of mice that lack a functional CD4 gene activates effector cells of the CD8+ phenotype. These cytotoxic T cells lyse virus-infected target cells in a MHC class II-restricted fashion. The results indicate that CD8+ T cells have the potential to utilize MHC class II as restriction element, illustrating that the immune system can effectively deal with evading microorganisms, such as viruses which down-regulate MHC class I.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D006517 Murine hepatitis virus A species of the CORONAVIRUS genus causing hepatitis in mice. Four strains have been identified as MHV 1, MHV 2, MHV 3, and MHV 4 (also known as MHV-JHM, which is neurotropic and causes disseminated encephalomyelitis with demyelination as well as focal liver necrosis). Gastroenteritis Virus, Murine,Hepatitis Virus, Mouse,Mouse Hepatitis Virus,Murine Gastroenteritis Virus,MHV-JHM,Murine coronavirus,Gastroenteritis Viruses, Murine,Hepatitis Viruses, Mouse,Mouse Hepatitis Viruses,Murine Gastroenteritis Viruses,Murine coronaviruses,Murine hepatitis viruses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D015704 CD4 Antigens 55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. They are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. T4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120. Antigens, CD4,CD4 Molecule,CD4 Receptor,CD4 Receptors,Receptors, CD4,T4 Antigens, T-Cell,CD4 Antigen,Receptors, Surface CD4,Surface CD4 Receptor,Antigen, CD4,Antigens, T-Cell T4,CD4 Receptor, Surface,CD4 Receptors, Surface,Receptor, CD4,Surface CD4 Receptors,T-Cell T4 Antigens,T4 Antigens, T Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017951 Antigen Presentation The process by which antigen is presented to lymphocytes in a form they can recognize. This is performed by antigen presenting cells (APCs). Some antigens require processing before they can be recognized. Antigen processing consists of ingestion and partial digestion of the antigen by the APC, followed by presentation of fragments on the cell surface. (From Rosen et al., Dictionary of Immunology, 1989) Antigen Processing,Antigen Presentations,Antigen Processings
D018352 Coronavirus Infections Virus diseases caused by the CORONAVIRUS genus. Some specifics include transmissible enteritis of turkeys (ENTERITIS, TRANSMISSIBLE, OF TURKEYS); FELINE INFECTIOUS PERITONITIS; and transmissible gastroenteritis of swine (GASTROENTERITIS, TRANSMISSIBLE, OF SWINE). Infections, Coronavirus,MERS (Middle East Respiratory Syndrome),Middle East Respiratory Syndrome,Coronavirus Infection,Infection, Coronavirus

Related Publications

M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
October 1995, The Journal of experimental medicine,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
September 1994, European journal of immunology,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
November 1997, Journal of virology,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
September 1991, Science (New York, N.Y.),
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
February 1993, Canadian journal of microbiology,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
December 1992, Proceedings of the National Academy of Sciences of the United States of America,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
September 1992, European journal of immunology,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
November 1994, European journal of immunology,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
May 2004, Immunology,
M H Heemskerk, and M W Schilham, and H M Schoemaker, and G Spierenburg, and W J Spaan, and C J Boog
July 1993, The Journal of experimental medicine,
Copied contents to your clipboard!