Tyrosine phosphorylation during synapse formation between identified leech neurons. 1995

S Catarsi, and S Ching, and D C Merz, and P Drapeau
Department of Biology, McGill University, Montreal, Quebec, Canada.

1. We have examined whether tyrosine phosphorylation is required for synapse formation between identified neurons from the central nervous system of the leech in culture. 2. Within a few hours of contact with the cell body of the serotonergic Retzius neuron (R cell), the soma of the postsynaptic pressure-sensitive neuron (P cell), but not the R cell, could be labelled intracellularly with an antibody against phosphotyrosine residues. The labelling seemed specific for P cells contacted by R cells, as it was greatly reduced in pairs of either R or P cells and in single cells. Genistein (20 microM) and lavendustin A (10 microM), selective inhibitors of tyrosine kinases, blocked the labelling of contacted P cells, whereas their ineffective analogues (genistein and lavendustin B) had no effect on labelling. 3. R cell contact also induced the loss of an extrasynaptic, depolarizing response (due to modulation of cation channels) to serotonin (5-HT) in the P cell within a few days of juxtaposing cell bodies and within an hour of contact with growth cones. Treatment of the neurons with the tyrosine kinase inhibitors (but not the ineffective analogues) prevented the loss of the depolarizing response and of single cation channel modulation by 5-HT. 4. R cells formed inhibitory, Cl(-)-dependent synapses with P cells. Synapse formation was prevented by the tyrosine kinase inhibitors but not by their ineffective analogues. These compounds had no obvious effect on neurite outgrowth or cell adhesion. We conclude that tyrosine phosphorylation is a signal during the formation of this synapse.

UI MeSH Term Description Entries
D007865 Leeches Annelids of the class Hirudinea. Some species, the bloodsuckers, may become temporarily parasitic upon animals, including man. Medicinal leeches (HIRUDO MEDICINALIS) have been used therapeutically for drawing blood since ancient times. Hirudinea,Hirudineas,Leeche
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

S Catarsi, and S Ching, and D C Merz, and P Drapeau
July 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
December 1996, Cellular and molecular neurobiology,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
January 1995, Journal of physiology, Paris,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
August 1994, Journal of neurobiology,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
July 1995, Journal of neurobiology,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
June 1998, Journal of neurophysiology,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
February 1987, The Journal of comparative neurology,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
January 1997, The Journal of physiology,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
September 1987, The Journal of experimental biology,
S Catarsi, and S Ching, and D C Merz, and P Drapeau
December 1989, Quarterly journal of experimental physiology (Cambridge, England),
Copied contents to your clipboard!