Defective I elements introduced into Drosophila as transgenes can regulate reactivity and prevent I-R hybrid dysgenesis. 1995

S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
Institut Gustave Roussy, CNRS URA147, Villejuif, France.

The I-R hybrid dysgenesis syndrome is characterized by a high level of sterility and I element transposition, occurring in the female offspring of crosses between males of inducer (I) strains, which contain full-length transposable I elements, and females of reactive (R) strains, devoid of functional I elements. The intensity of the syndrome in the dysgenic cross is essentially dependent on the reactivity level of the R females, which is ultimately controlled by still unresolved polygenic chromosomal determinants. In the work reported here, we have introduced a transposition-defective I element with a 2.6 kb deletion within its second open reading frame into a highly reactive R strain, by P-mediated transgenesis. We demonstrate that this defective I element gradually alters the level of reactivity in the three independent transgenic lines that were obtained, over several generations. After > 15 generations, the transgenic Drosophila show strongly reduced reactivity, and finally become refractory to hybrid dysgenesis, without, however, acquiring the inducer phenotype. Induction of a low reactivity level is reversible--reactivity again increases upon transgene removal--and is maternally inherited, as observed for the control of reactivity in natural R strains. These results demonstrate that defective I elements introduced as single-copy transgenes can act as regulators of reactivity, and suggest that some of the ancestral defective pericentromeric I elements that can be found in all reactive strains could be the molecular determinants of reactivity.

UI MeSH Term Description Entries
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017344 Genes, Insect The functional hereditary units of INSECTS. Insect Genes,Gene, Insect,Insect Gene
D030801 Animals, Genetically Modified ANIMALS whose GENOME has been altered by GENETIC ENGINEERING, or their offspring. Animals, Transgenic,Genetically Modified Animals,Transgenic Animals,Founder Animals, Transgenic,GMO Animals,Genetically Engineered Animals,Animal, GMO,Animal, Genetically Engineered,Animal, Genetically Modified,Animal, Transgenic,Animal, Transgenic Founder,Animals, GMO,Animals, Genetically Engineered,Animals, Transgenic Founder,Engineered Animal, Genetically,Engineered Animals, Genetically,Founder Animal, Transgenic,GMO Animal,Genetically Engineered Animal,Genetically Modified Animal,Modified Animal, Genetically,Modified Animals, Genetically,Transgenic Animal,Transgenic Founder Animal,Transgenic Founder Animals

Related Publications

S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
January 1990, Trends in genetics : TIG,
S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
October 1988, Nucleic acids research,
S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
January 1989, Progress in nucleic acid research and molecular biology,
S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
October 2010, Journal of cell science,
S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
June 1990, Mutation research,
S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
December 1986, Cell,
S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
December 1987, The EMBO journal,
S Jensen, and L Cavarec, and M P Gassama, and T Heidmann
January 1988, Oxford surveys on eukaryotic genes,
Copied contents to your clipboard!