Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). 1995

I Bezprozvanny, and R W Tsien
Department of Molecular and Cellular Physiology, Stanford University Medical Center, California 94305, USA.

Four different types of Ca2+ channel alpha 1 subunits, representing the major classes of voltage-gated Ca2+ channels, were individually coexpressed along with alpha 2/delta and beta 2b subunits in Xenopus oocytes. These subunits (and the encoded channel types and major tissues of origin) included alpha 1C (L-type, cardiac), alpha 1B (N-type, central nervous system), alpha 1A (P/Q-type, central nervous system), and alpha 1E (most likely R-type, central nervous system). Divalent cation currents through these channels (5 mM Ba2+) were evaluated with the two-microelectrode voltage-clamp technique. The expressed channels were compared with regard to their responses to a structurally novel, nondihydropyridine compound, mibefradil (Ro 40-5967). In the micromolar concentration range, this drug exerted clear inhibitory effects on each of the four channel types, reducing divalent cation current at all test potentials, with the non-L-type channels being more sensitive to inhibition than the L-type channels under fixed experimental conditions. For all channel types, mibefradil was a much more effective inhibitor at more depolarized holding potentials, suggesting tighter binding of the drug to the inactivated state than to the resting state. The difference in apparent affinities of resting and inactivated states of the channels, calculated based on a modulated receptor hypothesis, was 30-70-fold. In addition, the time course of decay of Ca2+ channel current was accelerated in the presence of drug, consistent with open channel block. The effect of increasing stimulation frequency was tested for L-type channels and was found to greatly enhance the degree of inhibition by mibefradil, consistent with promotion of block by channel opening and inactivation. Allowing for state-dependent interactions, the drug concentrations found to block L-, N-, Q-, and R-type channels by 50% are at least 10-fold higher than half-blocking levels previously reported for T-type channels in vascular smooth muscle cells under similar experimental conditions. This may help explain the ability of the drug to spare working myocardium (strongly negative resting potential, dominance of L-type channels in their resting state) while reducing contraction in blood vessels (presumably involving T-type channels or partially inactivated L-type channels). Thus, mibefradil is a new addition to the family of nonselective organic Ca2+ channel inhibitors, as exemplified by bepridil and fluspirilene, and may prove useful as an experimental tool for studying diverse physiological events initiated by Ca2+ influx. It complements classes of drugs with relatively selective effects on L-type channels, as exemplified by nifedipine and diltiazem.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001562 Benzimidazoles Compounds with a BENZENE fused to IMIDAZOLES.
D013764 Tetrahydronaphthalenes Partially saturated 1,2,3,4-tetrahydronaphthalene compounds. Tetralins
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

I Bezprozvanny, and R W Tsien
May 1997, Expert opinion on investigational drugs,
I Bezprozvanny, and R W Tsien
March 1998, The Journal of physiology,
I Bezprozvanny, and R W Tsien
January 2000, Membrane & cell biology,
I Bezprozvanny, and R W Tsien
September 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Bezprozvanny, and R W Tsien
July 1994, Circulation research,
Copied contents to your clipboard!