Voltage-dependent blockade of HERG channels expressed in Xenopus oocytes by external Ca2+ and Mg2+. 1998

W K Ho, and I Kim, and C O Lee, and Y E Earm
Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea. wonkyung@plaza.snu.ac.kr

1. We expressed the human eag-related gene (HERG), which is known to encode the delayed rectifier K+ current (IKr) in cardiac muscle, in Xenopus oocytes. Using a two-microelectrode voltage clamp technique, the effect of external Ca2+ and Mg2+ on the HERG current (IHERG) was investigated. 2. When [Ca2+]o was increased, the amplitude of outward IHERG elicited by depolarization decreased, and the rate of current onset slowed. The rate of current decay observed on repolarization was greatly accelerated. The threshold and fully activated potential of IHERG shifted to a more positive potential. On the other hand, the inactivation property represented by the negative slope of the I-V curve and the instantaneous conductance of IHERG were little affected by [Ca2+]o. 3. The effect of [Ca2+]o on IHERG can be interpreted using the channel blockade model. The blockade is voltage dependent; smaller dissociation constants (KM) at more negative potentials indicate that block is facilitated by hyperpolarization. KM changes e-fold for 14.5 mV and the fractional electrical distance of the binding site calculated from this value is 0.86. 4. Blockade by a low concentration of Ca2+ (0.5 mM) was inhibited by increasing [K+]o (from 2 to 20 mM), whereas blockade by a high concentration of Ca2+ (5 mM) was not affected by varying [K+]o, indicating that there is competition between permeating ions and blocking ions. 5. The effect of [Mg2+]o on IHERG was qualitatively similar to that of [Ca2+]o, but the potency was lower. 6. These results suggest that external Ca2+ and Mg2+ block the HERG channel in a voltage- and time-dependent manner, resulting in a voltage dependence which has been regarded as a property of the activation gate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005260 Female Females

Related Publications

W K Ho, and I Kim, and C O Lee, and Y E Earm
August 2014, Neuroscience bulletin,
W K Ho, and I Kim, and C O Lee, and Y E Earm
January 2001, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
W K Ho, and I Kim, and C O Lee, and Y E Earm
September 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W K Ho, and I Kim, and C O Lee, and Y E Earm
August 1991, The Biochemical journal,
W K Ho, and I Kim, and C O Lee, and Y E Earm
February 1997, The Journal of general physiology,
W K Ho, and I Kim, and C O Lee, and Y E Earm
March 1997, The American journal of physiology,
W K Ho, and I Kim, and C O Lee, and Y E Earm
January 2000, Journal of molecular and cellular cardiology,
W K Ho, and I Kim, and C O Lee, and Y E Earm
July 2014, Acta pharmacologica Sinica,
Copied contents to your clipboard!