A novel human type I hair keratin gene: evidence for two keratin hHa3 isoforms. 1994

M A Rogers, and J Schweizer, and T Kreig, and H Winter
German Cancer Research Center, Research Program 2, Heidelberg.

We present the nucleotide and amino acid sequence for a novel human type I hair keratin, which could be identified through its high sequence homology and strict carboxyterminal length identity as a human ortholog of the murine hair keratin mHa3. Our hHa3 sequence differs, however, from that of a previously described hHa3 hair keratin (published only as an amino acid sequence; [13]) in 24 amino acid position, 8 of which occur in the middle of the carboxyterminal domain. PCR of genomic DNA from 25 normal human subjects using a primer pair derived from sequence segments located in the 3'-region of our hHa3 clone that encode conserved amino acid sequences in both keratins, resulted in the amplification of two distinct products of 0.38 kbp and 1.0 kbp. DNA sequence analysis of the cloned PCR products allowed identification of the 0.38 kb sequence as that originating from Yu et al. [13] and the 1.0 kb sequence as that being derived from our data. The difference in fragment length was due to unique intron 6 sequences, indicating that these two keratin species are encoded by genes of their own. Moreover, extensive Southern blot analyses with DNA from 25 unrelated individuals of different races using a 3'-noncoding sequence from our keratin and the intron 6 sequence of the keratin of Yu et al. [13], as hybridization probes showed that both keratin genes are present as single copy sequences occurring ubiquitously and without gross alterations in the human genome. Collectively, these data demonstrate that the human type I hair keratin described in this paper represents an isoform of the previously described hHa3 keratin.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006197 Hair A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body. Fetal Hair,Hair, Fetal,Lanugo,Fetal Hairs,Hairs,Hairs, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015894 Genome, Human The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs. Human Genome,Genomes, Human,Human Genomes
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

M A Rogers, and J Schweizer, and T Kreig, and H Winter
November 1991, The Journal of investigative dermatology,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
May 1985, The Journal of biological chemistry,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
September 1992, Human molecular genetics,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
December 1988, The Journal of investigative dermatology,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
December 2011, Animal science journal = Nihon chikusan Gakkaiho,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
December 2002, Developmental dynamics : an official publication of the American Association of Anatomists,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
January 1993, DNA sequence : the journal of DNA sequencing and mapping,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
December 1988, Gene,
M A Rogers, and J Schweizer, and T Kreig, and H Winter
December 2005, The journal of investigative dermatology. Symposium proceedings,
Copied contents to your clipboard!