Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase by cyclic AMP in PC12 cells. 1995

P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.

Growth factor stimulation of the mitogen-activated protein (MAP) kinase pathway in fibroblasts is inhibited by cyclic AMP (cAMP) as a result of inhibition of Raf-1. In contrast, cAMP inhibits neither nerve growth factor-induced MAP kinase activation nor differentiation in PC12 pheochromocytoma cells. Instead, in PC12 cells cAMP activates MAP kinase. Since one of the major differences between the Ras/Raf/MAP kinase cascades of these cell types is the expression of B-Raf in PC12 cells, we compared the effects of cAMP on Raf-1 and B-Raf. In PC12 cells maintained in serum-containing medium, B-Raf was refractory to inhibition by cAMP, whereas Raf-1 was effectively inhibited. In contrast, both B-Raf and Raf-1 were inhibited by cAMP in serum-starved PC12 cells. The effect of cAMP is thus dependent upon growth conditions, with B-Raf being resistant to cAMP inhibition in the presence of serum. These results were extended by studies of Rat-1 fibroblasts into which B-Raf had been introduced by transfection. As in PC12 cells, B-Raf was resistant to inhibition by cAMP in the presence of serum, whereas Raf-1 was effectively inhibited. In addition, the expression of B-Raf rendered Rat-1 cells resistant to the inhibitory effects of cAMP on both growth factor-induced activation of MAP kinase and mitogenesis. These results indicate that Raf-1 and B-Raf are differentially sensitive to inhibition by cAMP and that B-Raf expression can contribute to cell type-specific differences in the regulation of the MAP kinase pathway. In contrast to the situation in PC12 cells, cAMP by itself did not stimulate MAP kinase in B-Raf-expressing Rat-1 cells. The activation of MAP kinase by cAMP in PC12 cells was inhibited by the expression of a dominant negative Ras mutant, indicating that cAMP acts on a target upstream of Ras. Thus, it appears that a signaling component upstream of Ras is also require for cAMP stimulation of MAP kinase in PC12 cells.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016716 PC12 Cells A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation. Pheochromocytoma Cell Line,Cell Line, Pheochromocytoma,Cell Lines, Pheochromocytoma,PC12 Cell,Pheochromocytoma Cell Lines

Related Publications

P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
October 1994, Molecular and cellular biology,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
February 1994, The Journal of biological chemistry,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
January 1996, The Journal of biological chemistry,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
January 2019, Frontiers in oncology,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
August 2005, Molecular biology of the cell,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
July 1993, The Journal of biological chemistry,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
July 1999, Molecular and cellular biology,
P Erhardt, and J Troppmair, and U R Rapp, and G M Cooper
August 2000, Journal of neurochemistry,
Copied contents to your clipboard!